
Beyond Pairwise Testing: Advancing 3-wise Combinatorial
Interaction Testing for Highly Configurable Systems

Chuan Luo
Beihang University

Beijing, China
chuanluo@buaa.edu.cn

Shuangyu Lyu
Beihang University

Beijing, China
19374290@buaa.edu.cn

Qiyuan Zhao
National University of Singapore

Singapore, Singapore
qiyuanz@comp.nus.edu.sg

Wei Wu
Central South University and

Xiangjiang Laboratory
Changsha, China

wei.wu@csu.edu.cn

Hongyu Zhang
Chongqing University
Chongqing, China

hyzhang@cqu.edu.cn

Chunming Hu∗

Beihang University
Beijing, China

hucm@buaa.edu.cn

Abstract

To meet the rising demand for software customization, highly con-

�gurable software systems play key roles in practice. Combinatorial

interaction testing (CIT) is recognized as an e�ective approach for

testing such systems. For CIT, the most important problem is con-

strained covering array generation (CCAG), which aims to construct

a minimum-sized C-wise covering array (CA), where C denotes test-

ing strength. Compared to pairwise testing (i.e., 2-wise CIT) that is

a widely-used CIT technique, 3-wise CIT can discover more faults

and bring more bene�t in real-world applications. However, current

state-of-the-art CCAG algorithms su�er from the severe scalability

challenge for 3-wise CIT, which renders them ine�ective in building

3-wise CAs for highly con�gurable systems. In this work, we per-

form an empirical study on various practical, highly con�gurable

systems to present that it is promising to build 3-wise CA through

extending 2-wise CA. Inspired by this, we propose ScalableCA, a

novel and scalable algorithm that can e�ectively alleviate the scala-

bility challenge for 3-wise CIT. Further, ScalableCA introduces three

new and e�ective techniques, including fast invalidity detection,

uncovering-guided sampling, and remainder-aware local search,

to enhance its performance. Our experiments on extensive real-

world, highly con�gurable systems show that, compared to current

state-of-the-art algorithms, ScalableCA requires one to two orders

of magnitude less running time to build 3-wise CA of 38.9% smaller

size in average for large-scale instances. Our results indicate that

ScalableCA greatly advances the state of the art in 3-wise CIT.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging; • Theory of computation→ Randomized local search.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680309

Keywords

Combinatorial Interaction Testing, Satis�ability, Sampling

ACM Reference Format:

Chuan Luo, Shuangyu Lyu, Qiyuan Zhao,WeiWu,Hongyu Zhang, andChun-

ming Hu. 2024. Beyond Pairwise Testing: Advancing 3-wise Combinatorial

Interaction Testing for Highly Con�gurable Systems. In Proceedings of the

33rd ACM SIGSOFT International Symposium on Software Testing and Analy-

sis (ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3650212.3680309

1 Introduction

Highly con�gurable software systems, which are crucial for satis-

fying user demands, pose a testing challenge due to the exponen-

tial growth in possible con�gurations with the number of options

[4, 28, 44, 52, 59, 61, 67, 71, 72, 86, 97]. Recent studies indicate that

such systems typically o�er around one thousand con�gurable

options, rendering exhaustive testing impractical [4, 59, 61, 97].

Combinatorial interaction testing (CIT) is a suitable approach for

testing these systems [4, 59, 61, 97]. CIT aims to build a test suite of

acceptable size (i.e., a set of a reasonable number of con�gurations)

to reveal the faults triggered by the combinations of any C options,

where C is a small integer denoting testing strength [44, 52, 65, 93].

For con�gurable systems, a C-wise tuple is a key concept and denotes

a combination of the values of C options. The target of C-wise CIT

is to form a C-wise covering array (CA), covering all C-wise tuples

while minimizing its size to reduce testing cost [43, 44, 52]. Further,

real-world con�gurable systems usually present hard constraints,

like exclusiveness and dependencies, on option interactions [73, 88].

Ensuring that each test case in C-wise CA satis�es all constraints is

crucial to avoid faulty outcomes and wasted resources [61, 88, 97].

A test case is valid if it satis�es all constraints; also, a C-wise tuple

is valid if it is covered by at least one valid test case. The problem

of C-wise constrained covering array generation (CCAG) is to form

a minimum-sized C-wise CA with only valid test cases. E�ectively

solving CCAG remains a big challenge [39, 43, 44, 52, 68].

With the increment in the value of C , the C-wise CCAG problem

becomes signi�cantly more di�cult [42–44, 52]. While pairwise

testing (i.e., 2-wise CIT) is prevalent due to its cost-e�ectiveness [61,

97], empirical studies on extensive real-world, highly con�gurable

systems show that pairwise testing only detects roughly 77% of

641

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0001-5028-1064
https://orcid.org/0009-0003-2040-9428
https://orcid.org/0000-0002-1017-1562
https://orcid.org/0000-0002-0975-4613
https://orcid.org/0000-0002-3063-9425
https://orcid.org/0000-0003-3473-9703
https://doi.org/10.1145/3650212.3680309
https://doi.org/10.1145/3650212.3680309

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chuan Luo, Shuangyu Lyu, Qiyuan Zhao, Wei Wu, Hongyu Zhang, and Chunming Hu

faults, whereas 3-wise CIT identi�es over 95% of faults [33–36].

Given this, a deeper focus on 3-wise CIT is imperative.

Current CCAG algorithms mainly fall into four categories, i.e.,

constraint-encoding algorithms (e.g., [1, 3, 24, 92, 96]), greedy algo-

rithms (e.g., [8–10, 12, 81, 91]), incremental generation algorithms

(e.g., [29, 31, 37–39, 82, 83, 85, 94]), and meta-heuristic algorithms

(e.g., [8, 13–15, 18, 20, 21, 27, 43, 44, 52, 62, 90]). However, exist-

ing CCAG algorithms su�er from the severe scalability challenge;

that is, they cannot e�ectively handle large-scale CCAG instances

[61, 74, 89, 97]. For example, recent studies [61, 97] indicate that ex-

isting algorithms struggle with large-scale 2-wise CCAG instances

(e.g., highly con�gurable systems with around one thousand op-

tions), taking extensive time and producing large test suites, which

degrades both e�ciency and e�ectiveness of the testing process.

Key Observation. Two recent algorithms, SamplingCA [61] and

CAmpactor [97], have addressed the scalability challenge for pair-

wise testing and advanced the state of the art in e�ciently con-

stucting small 2-wise CAs even for systems with over a thousand

options. However, beyond pairwise testing, the scalability challenge

remains for 3-wise CIT due to the vast number of valid 3-wise tu-

ples; our experiments (Section 6) show that both SamplingCA and

CAmpactor cannot generate 3-wise CAs e�ectively and e�ciently

for various highly con�gurable systems. Despite this de�ciency,

from our empirical study (Section 3.2) on extensive highly con�g-

urable systems, we observe that 2-wise CA covers most valid 3-wise

tuples, which motivates us to build 3-wise CA based on 2-wise CA.

Based on this key observation, we develop ScalableCA, a novel

and scalable algorithm that can alleviate the scalability challenge for

3-wise CIT. When solving the 3-wise CCAG problem, ScalableCA

consists of three stages, i.e., initialization stage, sampling stage, and

optimization stage. In the initialization stage, ScalableCA builds a 2-

wise CA � and then obtains the collection* of all remaining, valid

3-wise tuples not covered by �. In the sampling stage, ScalableCA

builds another test suite) via a new and e�ective sampling method,

for covering all valid 3-wise tuples in* . In the optimization stage,

ScalableCA reduces the size of) while preserving all valid 3-wise

tuples in* being covered by) . That is, the optimization stage �nds

a test suite) containing a small number of test cases, such that all

valid 3-wise tuples in* are covered. After all stages are performed,

the union of � and) (i.e., � ∪)) is a 3-wise CA and is the output

of ScalableCA, since � ∪) covers all valid 3-wise tuples.

Compared to current state-of-the-art algorithms, the major ad-

vantages of ScalableCA are as follows. First, di�erent from invoking

a costly process to directly build the 3-wise CA, in the initialization

stage ScalableCA generates a 2-wise CA of reasonable size, covering

the majority of valid 3-wise tuples. Since building a 2-wise CA is

fast, the e�ciency of ScalableCA is enhanced; meanwhile, thanks

to the high 3-wise coverage of a 2-wise CA, the problem space (i.e.,

the number of uncovered, valid 3-wise tuples) is signi�cantly re-

duced. Second, rather than dealing with the universal set of all valid

3-wise tuples, in both sampling and optimization stages ScalableCA

targets to generate another test suite of minimum size to cover all

remaining valid 3-wise tuples. Through this way, ScalableCA oper-

ates on a limited number of remaining, valid 3-wise tuples, so the

e�ectiveness of ScalableCA can be greatly improved. Moreover, we

propose novel algorithmic techniques, i.e., fast invalidity detection,

uncovering-guided sampling, and remainder-aware local search, to

strengthen the performance of ScalableCA.

Extensive experiments on large-scale instances present that in av-

erage ScalableCA builds 3-wise CA of 38.9% smaller size than current

state-of-the-art algorithms, i.e., SamplingCA [61] and CAmpactor

[97], indicating the superiority of ScalableCA; Also, ScalableCA

runs one to two orders of magnitude faster than SamplingCA and

CAmpactor , showing the high e�ciency. In addition, our evaluation

con�rms the e�ectiveness of each novel algorithmic technique intro-

duced by ScalableCA. Our experiments clearly show that ScalableCA

e�ectively mitigates the scalability challenge for 3-wise CIT.

The main contributions of this work are summarized as follows.

• Through an empirical study on various real-world, highly

con�gurable systems, we observe that 2-wise CA covers the

majority of valid 3-wise tuples, and reveal that it is promising

to build the 3-wise CA based on a 2-wise CA.

• Based on this key observation, we design ScalableCA, a new

and scalable algorithm that is able to e�ectively alleviate the

scalability challenge for 3-wise CIT.

• We propose three novel techniques, i.e., fast invalidity de-

tection, uncovering-guided sampling, and remainder-aware

local search, to enhance the performance of ScalableCA.

• Extensive experiments show the superiority of ScalableCA,

indicating that ScalableCA can considerably push forward

the state of the art in solving the 3-wise CCAG problem.

2 Preliminaries

Here we provide necessary notations and de�nitions of this work.

2.1 Combinatorial Interaction Testing

System Under Test. A system under test (SUT), i.e., a con�gurable

system and an instance in this work, can be con�gured using a set

of options, denoted as $. Each option >8 ∈ $ has its value domain

+8 , which indicates the set of all possible values for >8 . As discussed

in Section 1, real-world con�gurable systems typically have a set

of hard constraints on options, denoted as � , which speci�es the

permissible combinations of option values. Hence, in this work an

SUT (is expressed as a pair (= ($,�).

Tuple. Given an SUT (= ($,�), a tuple is a collection of

pairs, i.e., g = {(>81 , E81), (>82 , E82), . . . , (>8C , E8C)}, implying that op-

tion >8 9 ∈ $ takes value E8 9 ∈ +8 9 . A tuple of size C is called a

C-wise tuple. In this work, 2-wise tuple (i.e., pairwise tuple) and 3-

wise tuple are critical concepts. Moreover, given a 3-wise tuple g =

{(>81 , E81), (>82 , E82), (>83 , E83)}, g has three derived 2-wise tuples, i.e.,

{(>81 , E81), (>82 , E82)}, {(>81 , E81), (>83 , E83)} and {(>82 , E82), (>83 , E83)}.

Test Case.Given an SUT (= ($,�), a test case (i.e., con�guration)

is a tuple that covers all options in$. A test case is a |$ |-wise tuple,

i.e., c = {(>1, E1), (>2, E2), . . . , (> |$ | , E |$ |)}, indicating that option

>8 ∈ $ is assigned value E8 ∈ +8 . A test suite is a set of test cases. A

C-wise tuple g is covered by a test case c if g ⊆ c ; that is, all options

in g take the same values as the ones in c . Also, a C-wise tuple g is

covered by a test suite) if g is covered by any test case in) . Given

a C-wise tuple g and a test case c , notation c ◦ g is a new test case

c ′, satisfying the following requirements: 1) c ′ covers g ; 2) for each

option >8 not appearing in g , >8 ’s value in c and c ′ remains the

same. Thus, c ◦ g stands for a new test case that overrides c by g .

642

Beyond Pairwise Testing: Advancing 3-wise Combinatorial Interaction Testing for Highly Configurable Systems ISSTA ’24, September 16–20, 2024, Vienna, Austria

For many practical con�gurable systems, the values assigned

to options are subject to hard constraints [73]. To guarantee the

correctness of testing process, each adopted test case requires to

satisfy all hard constraints. In this work, a test case c is valid if it

satis�es all hard constraints. Also, a C-wise tuple g is valid if g is

covered by at least one valid test case. Given an SUT (, its test suite

) and a testing strength C , the C-wise coverage of) is the fraction

between the number of) ’s covered, valid C-wise tuples, and the

number of all valid C-wise tuples for (; we note that C-wise coverage

is a standard and well-known metric, and it has been adopted by

recent studies on testing highly con�gurable systems [4, 59, 69, 89].

Covering Array. Given an SUT (= ($,�), a C-wise covering

array (CA) is a test suite consisting of valid test cases, denoted as

�, such that all valid C-wise tuples are covered by �.

The problem of C-wise constrained covering array generation

(CCAG) is to build a C-wise CA as small-sized as possible, which is

a fundamental problem in CIT [52, 61, 97]. As discussed in Section

1, adopting 3-wise CA for testing highly con�gurable systems de-

tects over 95% of faults. However, solving large-scale 3-wise CCAG

instances (i.e., generating 3-wise CAs for highly con�gurable sys-

tems) still remains a challenge. Hence, it is crucial to design high-

performance algorithms for large-scale 3-wise CCAG instances.

This work focuses on the binary scenario, where each option

takes a Boolean value, following recent research [4, 59, 61, 97]. It is

known that the general scenario (i.e., non-binary scenario), where

each option can take multiple possible values, can be converted into

the binary scenario [4, 59, 61, 97]. The instances used in this work

are all transformed from the non-binary scenario and collected from

real-world, highly con�gurable systems, emphasizing the practical

importance of studying the binary scenario for CIT [4, 59, 61, 97].

2.2 Boolean Formulae

It is well known that an SUT can be encoded as a Boolean formula

[2, 5, 63, 64, 79]. As recognized by recent studies [4, 59, 61, 97], an

e�ective way to deal with highly con�gurable systems is to utilize

e�ective techniques for handling Boolean formulae. Hence, we

introduce Boolean formulae and present the connection between

Boolean formulae and highly con�gurable systems.

Given a Boolean variable G , either G or ¬G is a literal, and a

clause 2 is a disjunction of literals. Boolean variable serves as the

fundamental component of a Boolean formula, usually expressed

in conjunctive normal form (CNF) [76]. A formula � in CNF is a

conjunction of clauses, i.e., � = 21 ∧ · · · ∧2< , where 2 9 (1 ≤ 9 ≤ <)

is a clause. Given a formula � in CNF, V (F) represents the set of

all Boolean variables in � while C (F) is the set of all clauses in � .

Given a Boolean variable G8 ∈ V (F), the value of G8 is either 0 or 1.

An assignment of a formula � refers to amappingU : V (F) → {0, 1},

and each variable is assigned a Boolean value under U . For a clause

2 9 ∈ C (F), 2 9 has two possible states under assignment U : if at

least one literal in 2 9 evaluates to 1 under U , then 2 9 is satis�ed;

otherwise, 2 9 is unsatis�ed. Given an assignment U , if U makes all

clauses satis�ed, then U is a satisfying assignment, also known as a

solution; otherwise, U is an unsatisfying assignment.

Given an SUT (= ($,�) and its encoded Boolean formula � ,

the option set$ of (is related to the variable set V (F) of � , and the

hard constraint set � of (corresponds to the clause set C (F) of � .

Moreover, a (valid) test case of (is a (satisfying) assignment of � , and

a C-wise tuple of (is � ’s literal combination of size C . For example,

the 3-wise tuple of (, i.e., {(>1, 0), (>6, 1), (>8, 1)}, corresponds to

the literal combination of � , i.e., {¬G1, G6, G8}.

Given an SUT (and its encoded Boolean formula � , the C-wise

CCAG problem in CIT is equivalent to the problem of building a set

of � ’s satisfying assignments, ensuring that all valid C-wise tuples

are covered. In theory, due to the existence of hard constraints,

�nding a satisfying assignment for a Boolean formula is known

as the in�uential Boolean satis�ability (SAT) problem, which is a

prototypical NP-complete problem [7]. Therefore, a practical SAT

solver is necessary when solving the C-wise CCAG problem. Since

a recent SAT solver named ContextSAT [61], which is developed

on the basis of MiniSAT [17], exhibits its e�ectiveness in handling

those Boolean formulae modeled from SUTs [61, 97], in this work

ScalableCA also employs ContextSAT to process hard constraints.

3 Challenge, Study and Solution

Here, we �rst discuss the scalability challenge for 3-wise CIT, and

then we perform empirical study to present a potential solution.

3.1 Scalability Challenge for 3-wise CIT

As described in Section 1, existing CCAG algorithms su�er from the

scalability challenge [61, 74, 89, 97]. Recently, two powerful CCAG

algorithms, i.e., SamplingCA [61] and CAmpactor [97], are proposed

to mitigate the scalability challenge for pairwise testing. They rep-

resent the current state of the art of the CCAG problem and can

e�ectively generate 2-wise CAs for highly con�gurable systems.

However, beyond pairwise testing, there still exists the severe scal-

ability challenge for 3-wise CIT, and both of them cannot process

large-scale 3-wise CCAG instances e�ectively and e�ciently.

When dealing with the C-wise CCAG problem, both SamplingCA

and CAmpactor aim to directly build the C-wise CA, so as to cover all

valid C-wise tuples. However, given a highly con�gurable system,

the number of valid 3-wise tuples is much greater than that of

valid 2-wise tuples. According to recent empirical studies on testing

highly con�gurable systems [4, 59, 61, 97], such types of systems

usually expose thousands of options. As an example, for a highly

con�gurable system with one thousand options, where each option

has 2 possible values, the number of all possible 2-wise tuples is
(

1000

2

)

× 22, which is smaller than 2 million, while the number of all

possible 3-wise tuples is
(

1000

3

)

×23, a huge value that is greater than

1.3 billion. For a highly con�gurable system, the number of 3-wise

tuples is several orders of magnitude greater than that of 2-wise

tuples. Also, with the growth of the number of options, the gap

between the numbers of 2-wise tuples and 3-wise tuples becomes

more signi�cant. The existence of the huge number of 3-wise tuples

severely degrades both e�ectiveness and e�ciency of SamplingCA

and CAmpactor , which explains the reason why SamplingCA and

CAmpactor still su�er from the scalability challenge for 3-wise CIT.

Also, our experiments (Section 6) on various real-world, highly

con�gurable systems show that SamplingCA and CAmpactor con-

sume much running time (e.g., a few days) to build 3-wise CAs of

relatively large sizes. Since using a large-sized test suite would re-

duce the testing e�ectiveness in practice [70], it is critical to propose

a practical solution to the scalability challenge for 3-wise CIT.

643

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chuan Luo, Shuangyu Lyu, Qiyuan Zhao, Wei Wu, Hongyu Zhang, and Chunming Hu

Table 1: Results of the 2-wise CAs generated by SamplingCA

and CAmpactor on all large-scale instances.

SamplingCA’s 2-wise CA CAmpactor’s 2-wise CA

#Total 2,180,314,493.8 2,180,314,493.8
#Cov. 2,165,423,277.7 2,120,251,170.6
#Uncov. 14,891,216.1 60,063,323.2
3-wise coverage 99.3% 97.2%

3.2 Empirical Study

Setup of Empirical Study. We conduct an empirical study to

investigate whether a 2-wise CA covers the majority of valid 3-wise

tuples. In this empirical study, we adopt a standard and well-known

metric called 3-wise coverage (i.e., C-wise coverage with C = 3, as

described in Section 2.1) [59, 89], to assess the number of valid 3-

wise tuples covered by a given test suite [59]. If a test suite achieves

higher 3-wise coverage, then it covers more 3-wise tuples. To this

end, the target of the empirical study is equivalent to analyzing

whether a 2-wise CA could obtain high 3-wise coverage in practice.

For the empirical study, we adopt a benchmarking set of 122

large-scale, public instances, and these instances have been widely

evaluated in recent studies on testing highly con�gurable systems

[4, 59, 61, 97]. Moreover, each instance is collected from a real-world,

highly con�gurable system, and encoded as a Boolean formula. For

our adopted instances, the number of options varies from 94 to

1,850, and the number of hard constraints ranges from 190 to 62,183.

To help readers better reproduce our empirical results, all instances

used in this work and their related information (i.e., the numbers of

options and hard constraints) are public available in our repository.1

As shown by experiments in the literature [61, 97], current state-

of-the-art algorithms (i.e., SamplingCA [61] and CAmpactor [97])

can e�ectively build 2-wise CAs for SUTs. Therefore, in our empiri-

cal study, we employ SamplingCA and CAmpactor for generating

2-wise CAs. Since both of them are randomized algorithms [61, 97],

each algorithm is performed 10 independent runs per instance.

Results of Empirical Study. For each algorithm’s built 2-wise

CAs over all instances, we report the average number of covered

3-wise tuples (‘#Cov.’), the average number of uncovered, valid

3-wise tuples (‘#Uncov.’), and the average 3-wise coverage; also,

we list the average number of all valid 3-wise tuples, denoted as

‘#Total’. The results are summarized in Table 1. We observe that

the 2-wise CAs generated by SamplingCA and CAmpactor achieve

the average 3-wise coverage of 99.3% and 97.2%, respectively. Our

results con�rm that 2-wise CA can cover themajority of valid 3-wise

tuples in extensive real-world scenarios, indicating the feasibility

of the following solution to the scalability challenge for 3-wise CIT.

3.3 Potential Solution

To relieve the scalability challenge for 3-wise CIT, a potential solu-

tion realized by our ScalableCA algorithm is to construct the 3-wise

CA based on a 2-wise CA. The e�ectiveness of this solution depends

on our empirical observation that a 2-wise CA covers the majority

of valid 3-wise tuples. Since the 3-wise CCAG problem aims to

cover all valid 3-wise tuples, compared with building 3-wise CA

from the scratch, our solution (i.e., generating 3-wise CA based on

1https://github.com/chuanluocs/ScalableCA

Boolean formula

encoded from SUT

𝛼0⋯𝛼|𝐴|𝛼|𝐴|+1𝛼|𝐴|+2⋯⋯𝛼|𝐴∪𝑇|

𝛼0⋯𝛼|𝐴|𝛼|𝐴|+1′⋯𝛼|𝐴∪𝑇∗|′|𝑇∗| ≤ |𝑇|

𝛼0⋯𝛼|𝐴|
2-wise CA

3-wise

CA

The set of missing

3-tuples

OutputInput

Figure 1: ScalableCA’s entire process for building 3-wise CA.

2-wise CA) could greatly decrease the number of 3-wise tuples that

need to be covered, which signi�cantly reduces the problem space.

4 Our Proposed ScalableCA Algorithm

In this section, we propose ScalableCA, a novel and scalable algo-

rithm for e�ectively tackling the 3-wise CCAG problem.

4.1 Overall Design of ScalableCA

Based on the observation in Section 3.2, we develop a novel and

scalable algorithm called ScalableCA for solving the 3-wise CCAG

problem. The main ideas behind ScalableCA are as follows: 1) an

existing algorithm is invoked to build a 2-wise CA � to cover the

majority of valid 3-wise tuples; 2) another test suite) is constructed

to cover all the remaining, valid 3-wise tuples. In this manner, each

valid 3-wise tuple is ensured to be covered by�∪) , indicating that

�∪) is a 3-wise CA, so ScalableCA reports�∪) as its �nal output.

The overall design of ScalableCA is outlined in Algorithm 1. The

input of ScalableCA is a given Boolean formula � that is encoded

from an SUT, and the output of ScalableCA is a 3-wise CA of � .

To make readers better understand ScalableCA, Figure 1 illus-

trates its entire process for building 3-wise CA. According to Al-

gorithm 1 and Figure 1, ScalableCA consists of three key stages,

i.e., initialization stage, sampling stage and optimization stage. In

the initialization stage, ScalableCA generates a 2-wise CA � using

an existing algorithm, and it obtains the remaining set * of all

valid 3-wise tuples not covered by � (Lines 1–2 in Algorithm 1).

In the sampling stage, ScalableCA builds another test suite) to

cover all valid 3-wise tuples in * (Lines 3–14 in Algorithm 1). In

the optimization stage, ScalableCA reduces) ’s size via removing

and altering test cases in) , while ensuring all 3-wise tuples in *

to remain covered (Line 15 in Algorithm 1).

4.2 Initialization Stage

Since a feasible solution to the scalability challenge for 3-wise CIT

is to construct the 3-wise CA by extending a 2-wise CA, in the

initialization stage ScalableCA is designed to invoke an existing

algorithm to build a 2-wise CA �. As discussed before, in the lit-

erature there are two state-of-the-art algorithms, i.e., SamplingCA

and CAmpactor , both of which can e�ectively generate a 2-wise CA

for a given highly con�gurable system. According to Table 1, on

average the 2-wise CA generated by SamplingCA covers more valid

3-wise tuples than the one built by CAmpactor; that is, adopting

644

https://github.com/chuanluocs/ScalableCA

Beyond Pairwise Testing: Advancing 3-wise Combinatorial Interaction Testing for Highly Configurable Systems ISSTA ’24, September 16–20, 2024, Vienna, Austria

Algorithm 1: Overall Design of the ScalableCA Algorithm

Input: L : Boolean formula in CNF;

Output: G∗: 3-wise covering array (CA) of � ;

1 �← the 2-wise CA built by SamplingCA;

2 * ← the remaining set of all valid 3-wise not covered by � via FID;

3) ← ∅;

4 * ′ ← * ;

5 while True do

6 ugsprob← UpdateUGSProb(�,* ′) ;

7 Q ← a set of X valid test cases sampled according to ugsprob;

8 U∗ ← the test case with the largest contribution from& ;

9 if contribution(U∗, T) ≤ 0 then break;

10) ←) ∪ {U∗};

11 Remove all 3-wise tuples that are covered by U∗ from* ′;

12 foreach 3-wise tuple g in* ′ do

13 Generate a valid test case U that covers g ;

14) ←) ∪ {U };

15) ∗ ← RALS (* ,)) ;

16 return �∗ ← � ∪) ∗;

SamplingCA for generating 2-wise CA would result in fewer uncov-

ered, valid 3-wise tuples, which could further reduce the problem

space for both sampling and optimization stages. Thus, ScalableCA

calls SamplingCA to generate the 2-wise CA �. The initialization

stage is outlined in Lines 1–2 in Algorithm 1.

Besides building 2-wise CA, another task in this stage is to con-

struct the remaining set* of all valid 3-wise tuples not covered by

�. To obtain * , a natural approach is to conduct an enumeration

process, where each possible 3-wise tuple g is examined whether g

is valid and uncovered. In fact, justifying whether an uncovered 3-

wise tuple is valid requires invoking a SAT solver one time. Since the

SAT problem is NP-complete and is computationally challenging,

even calling an e�ective SAT solver would cost a certain amount

of running time [61]. Due to the existence of hard constraints, it is

recognized that in practice there exist many invalid 3-wise tuples

[59], so the natural approach would be quite time-consuming.

Fast Invalidity Detection Technique. To obtain * in an e�-

cient manner, it is advisable to decrease the number of SAT solver

calls. Here we propose a novel technique called fast invalidity de-

tection (FID), which is designed based on the following property.

Property 1. Given a 3-wise tuple g , if any of g ’s three derived

2-wise tuples is invalid, then g is invalid.

Proof. Assuming g ’s one derived 2-wise tuple l is invalid, it

means that no valid test case covering l exists. Therefore, there is

no valid test case that covers g , so g is an invalid 3-wise tuple. □

When justifying the validity status of a 3-wise tuple g , accord-

ing to Property 1, our FID technique �rst checks whether g ’s all

three derived 2-wise tuples are valid; if this is the case (i.e., each

derived 2-wise tuple of g is valid), then FID calls a SAT solver named

ContextSAT [61] to verify the validity status of g ; otherwise, g can

be directly decided as an invalid 3-wise tuple without calling SAT

solver. Hence, compared to the natural approach, FID could reduce

the number of SAT solver calls, which could improve the e�ciency

for achieving* . Further, � is a 2-wise CA, so checking the validity

status of a given 2-wise tuple l is equivalent to judging whether �

covers g . As recognized by recent studies [61, 97], the process of

checking whether � covers g is e�cient, which ensures that acti-

vating FID to construct* is of high e�ciency. In fact, the e�ciency

of our FID technique will be analyzed in Section 6.3.

4.3 Sampling Stage

The sampling stage is to construct a test suite) covering all 3-wise

tuples in * , such that) ∪ � becomes a 3-wise CA. Reducing the

number of test cases is critical, since a large-sized test suite would

incur ine�cient testing in practice. The ultimate target of this stage

is to build a test suite of small size while covering all 3-wise tuples

in* . The sampling stage is outlined in Lines 3–14 in Algorithm 1.

Following the e�ective two-procedure design demonstrated in

2-wise CA generation [61], the sampling stage comprises two pro-

cedures, i.e., iterative procedure and addition procedure. In the

iterative procedure, ScalableCA iteratively constructs a test suite

) , which is initialized as an empty set, to cover as many 3-wise

tuples in* as possible. Then, in the addition procedure ScalableCA

adds a certain number of valid test cases into) , to ensure that)

covers all 3-wise tuples in* . As described above, the e�ectiveness

of iterative procedure plays a crucial role in minimizing the �nal

size of) , since the size of test suite produced by iterative proce-

dure directly impacts) ’s size. Moreover, if the iterative procedure’s

built test suite covers more 3-wise tuples in* , then in the addition

procedure ScalableCA needs fewer test cases to be inserted into) .

Thus, for the iterative procedure, it is critical to generate a test suite

of small size while covering more 3-wise tuples in* . The iterative

procedure is presented in Lines 3–11 in Algorithm 1, while the

addition procedure is shown in Lines 12–14 in Algorithm 1. This

subsection describes the technical details of the iterative procedure.

In order to enhance the e�ectiveness of iterative procedure, in

each iteration it is advisable to generate a valid test case U∗, which

maximizes the bene�t, and adds U∗ into) . Thus, we need to address

a core problem, i.e., how to e�ectively quantify the bene�t of a valid

test case. As discussed above, one primary target of the iterative

procedure is to empower test suite) to cover 3-wise tuples in* as

many as possible, so it is desirable to design an evaluation metric

that focuses on computing the increment in the number of covered

3-wise tuples that belong to* . Based on this design, we propose an

e�ective evaluationmetric called contribution to precisely assess the

unique contribution of a given valid test case U over) with regard

to* . Given a valid test case U , a test suite) , and a remaining set

* , the contribution of U is de�ned as the increment in the number

of) ’s covered 3-wise tuples that belong to* if U is added into) .

We discuss how to build a valid test case with large contribution

in each iteration. Inspired by recent works [59, 61], ScalableCA uses

a greedy mechanism for choosing the test case. In each iteration

ScalableCA �rst constructs a candidate set & containing X valid

test cases. From & ScalableCA greedily selects the one U∗ with the

largest contribution and adds U∗ into) . Here X is an integer-valued

hyper-parameter of ScalableCA, and the impact of X’s setting on

ScalableCA’s performance will be studied in Section 6.4.

Also, we need to discuss the termination criterion of the itera-

tive procedure. As the iterative procedure continues, the number of

uncovered 3-wise tuples in* would be reduced, leading to smaller

645

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chuan Luo, Shuangyu Lyu, Qiyuan Zhao, Wei Wu, Hongyu Zhang, and Chunming Hu

Algorithm 2: The UpdateUGSProb Mechanism

Input: L : Boolean formula in CNF;

[
′: current set of uncovered, valid 3-wise tuples;

Output: ugsprob: uncovering-guided sampling probabilities;

1 foreach G8 ∈ + (�) do

2 _8 ← the number of G8 -negative 3-wise tuples in*
′;

3 b8 ← the number of G8 -positive 3-wise tuples in*
′;

4 if _8 + b8 > 0 then ugsprob(xi) ← b8/(_8 + b8) ;

5 else ugsprob(xi) ← 0.5;

6 return ugsprob;

contribution values for selected test cases in subsequent iterations.

Once the contribution of the picked test case U∗ is 0, the iterative

procedure terminates. This termination criterion ensures only test

cases with positive contribution can be inserted into) , thus pre-

venting unnecessary expansion of) ’s size.

Uncovering-Guided Sampling Method. According to the de-

scription of greedy mechanism, its e�ectiveness is obviously im-

pacted by the quality of candidate set & . Hence, the generation of

high-quality candidate set is a crucial problem that requires to be

addressed. To generate high-quality candidate set, state-of-the-art

algorithms adopt a context-aware sampling (CAS) method, which

aims to sample a set of valid test cases that are dissimilar to those

test cases already in) [59, 61]. As discussed before, it is desirable

to construct& as a set including multiple valid test cases with large

contribution. However, existing CAS method does not explicitly

take the remaining set* of uncovered 3-wise tuples into considera-

tion during its process of sampling test cases, so CAS would not be

su�ciently capable of sampling test cases with large contribution,

which imminently calls for e�ective sampling methods.

To tackle this serious issue, we propose a novel uncovering-

guided sampling (UGS) method, which focuses on sampling a col-

lection of test cases covering more 3-wise tuples in* . Before intro-

ducing the technical details of our UGS method, we �rst present the

notion of uncovering-guided sampling probability. Given a Boolean

formula � , the uncovering-guided sampling probability of a vari-

able G8 ∈ V (F), denoted as ugsprob(xi), represents the probability

that the value of G8 is sampled as 1. That is, the probability that the

value of G8 is sampled as 0 is 1 − ugsprob(xi).

Since UGS aims to sample multiple test cases that cover more

3-wise tuples in* , our UGS method is designed to concentrate on

such currently uncovered 3-wise tuples in * . As aforementioned,

in each iteration, a selected test case U∗ would be added into) ,

making* contain fewer uncovered 3-wise tuples, so it is necessary

to maintain another collection * ′ that consists of all 3-wise tuples

that belong to * and are currently not covered by) . To this end,

* ′ is initialized and updated as follows: 1) * ′ is initialized as a

duplicate copy of * ; 2) at the end of each iteration, the 3-wise

tuples covered by U∗ are removed from* ′. In fact, once ScalableCA

achieves a test suite) that makes* ′ become empty (i.e., all 3-wise

tuples in* become covered by)), � ∪) would be a 3-wise CA.

Since * ′ plays a key role in our UGS method, it is desirable

to make uncovering-guided sampling probabilities re�ect the sta-

tus of * ′. Recent studies show that adaptively updating sampling

probability could strengthen the e�ectiveness of sampling methods

[59, 61]. As a result, in each iteration UGS dynamically updates

each variable’s uncovering-guided sampling probability based on

the status of* ′. Given a variable G8 and a tuple g where G8 appears,

if the value of G8 under g is 0, g is a G8 -negative tuple; otherwise,

g is a G8 -positive tuple. For each variable G8 , notation _8 denotes

the number of G8 -negative 3-wise tuples in *
′, and notation b8 rep-

resents the number of G8 -positive 3-wise tuples in * ′. To sample

a test case covering more 3-wise tuples in * ′, for each variable

G8 , ugsprob(xi) should be larger if _8 < b8 ; otherwise, ugsprob(xi)

should be smaller. Based on this discussion, in this work ugsprob(xi)

is computed as the ratio between b8 and _8 + b8 . The mechanism of

updating ugsprob, i.e., UpdateUGSProb, is presented in Algorithm 2.

In each iteration, our UGS method updates ugsprob for each vari-

able and samples multiple test cases accordingly. However, these

sampled test cases are not guaranteed to be valid due to hard con-

straints. To ensure validity, particularly for test cases generated in

the addition procedure (Line 13 in Algorithm 1), it is widely rec-

ognized that using a SAT solver is an e�ective method [59, 61, 97].

Hence, as described in Section 2.2, ScalableCA employs an e�ective

SAT solver named ContextSAT [61] to generate valid test cases and

alter an invalid test case into a valid one with minimal modi�cation.

4.4 Optimization Stage

Once the sampling stage terminates, the union of the initialization

stage’s built 2-wise CA � and the sampling stage’s constructed test

suite) , i.e., � ∪) , becomes a 3-wise CA. The optimization stage

(Line 15 in Algorithm 1) is to reduce the size of generated 3-wise

CA, while preserving all valid 3-wise tuples to be covered.

Local search algorithms, known for their e�ectiveness in re-

ducing covering array size, achieve state-of-the-art performance

[42–44, 52, 97]. Also, local search has shown great success in solving

a variety of combinatorial optimization problems [11, 22, 45–51, 54–

60, 77]. Notably, CAmpactor stands out as the current best algorithm

in this domain, particularly excelling in compacting 2-wise CA [97].

Given this, a natural solution is to directly employ CAmpactor to

compact the whole 3-wise CA. However, CAmpactor’s design neces-

sitates operations on all valid 3-wise tuples. As discussed in Section

3.1, the scalability challenge for 3-wise CIT results in a vast number

of valid 3-wise tuples for highly con�gurable systems, incurring

both ine�ectiveness and ine�ciency of CAmpactor .

Remainder-Aware Local Search Approach. To address this

severe problem, we design a new and e�ective remainder-aware

local search (RALS) approach. Rather than CAmpactor that aims to

compact � ∪) (i.e., the entire 3-wise CA), RALS minimizes) ’s size.

Compared to operating on all valid 3-wise tuples of the given SUT,

RALS only concerns the valid 3-wise tuples in the remaining set

* (we note that * is di�erent from * ′, which is only used in the

sampling stage). RALS takes test suite) and remaining set* as its

inputs, and it optimizes) ’s size while making all 3-wise tuples in

* be covered. Finally, RALS returns an optimized test suite) ∗ of

smaller size. Through this way, � ∪) ∗ is guaranteed to be a 3-wise

CA and is the �nal output of the entire ScalableCA algorithm.

Our RALS approach is presented in Algorithm 3, where RALS

repetitively conducts search steps to modify) , in order to minimize

) ’s size. In each search step, RALS �rst checks whether) covers all

3-wise tuples in * . If so,) ∗ is updated accordingly, and a random

646

Beyond Pairwise Testing: Advancing 3-wise Combinatorial Interaction Testing for Highly Configurable Systems ISSTA ’24, September 16–20, 2024, Vienna, Austria

Algorithm 3: The RALS Approach

Input: [: remaining set obtained in the initialization stage;

Z : test suite output by the sampling stage;

Output: Z ∗: optimized test suite;

1) ∗ ←) ;

2 while) ∗ has been updated during the last ! search steps do

3 if) covers all 3-wise tuples in* then

4) ∗ ←) ;

5 Remove a random test case from) ;

6 continue;

7 g ← an uncovered 3-wise tuple randomly chosen from* ;

8 Θ← {(V, V ◦ g) | V ∈) is valid, and V ◦ g is valid};

9 if Θ is not empty then

10 \ ∗ ← the operation with the largest score from Θ;

11 Perform operation \ ∗ on) ;

12 else

13 V ← a test case randomly picked from) ;

14 V ′ ← a valid test case covering g found by ContextSAT ;

15 Perform operation (V, V ′) on) ;

16 return) ∗;

test case is removed from) for decreasing) ’s size by 1 (Lines

4–6 in Algorithm 3); otherwise, an operation is performed on) ,

in order to make) cover more 3-wise tuples in * (Lines 7–15 in

Algorithm 3). Actually, the basic skeleton of RALS is to solve a series

of decision problems: given a speci�c size `, the decision problem

is to �nd a test suite of size ` such that all 3-wise tuples in * are

covered. Once RALS solves the decision problem of size `, RALS

continues to solve the decision problem of size ` − 1. Through this

way, RALS can reduce the size of) , and) ∗ represents the smallest-

sized test suite that covers all 3-wise tuples in * during the search

process. Our RALS algorithm would terminate once) ∗ has not been

updated in the last ! search steps, where ! is an integer-valued

hyper-parameter. Adjusting ! could balance the e�ectiveness and

e�ciency of RALS, and its e�ect will be analyzed in Section 6.4.

As analyzed above, an important goal of RALS is to decide the

operation to be performed in each search step. An operation is

de�ned as a pair \ = (U, V), where U ∈) and V ∉) are both valid

test cases, and performing operation \ means replacing U with V

in) . Since the decision problem aims to cover all 3-wise tuples

in* , it is advisable to perform the operation that can cover more

3-wise tuples in * . Hence, we propose an e�ective metric called

score to assess the bene�t of an operation \ if \ is performed on) .

Given an operation \ , the score of operation \ , denoted as score(\),

is the increment in the number of covered 3-wise tuples in* if \ is

performed on) . Speci�cally, score(\) is computed as the number of

uncovered 3-wise tuples in* becoming covered, minus the number

of covered 3-wise tuples in* becoming uncovered, if \ is performed

on) . Thus, it is bene�cial to perform operations with large score.

In each search step, for performing an operation with large score,

RALS works as follows. First, a 3-wise tuple g , which is not covered

by) , is randomly chosen from * ; then, RALS constructs a set of

candidate operations Θ that aim to make g become covered, i.e.,

Θ = {(V, V ◦ g) | V ∈) is valid, and V ◦ g is valid}, where operator

◦ has been de�ned in Section 2.1, and V ◦ g represents a new test

case that overrides V by g . If candidate operation set Θ is not empty,

RALS selects and performs the best operation \∗ fromΘ (i.e., the one

with the largest score). Otherwise, RALS is considered to encounter

the local optimum situation, since no candidate operation can be

performed. It is recognized that employing randomized strategies

could help local search algorithms better handle the local optimum

situation [25, 40, 46, 47, 66, 97]. Hence, RALS applies the following

random strategy: RALS randomly selects a test case V from) , and

then it invokes a SAT solver named ContextSAT [61] to achieve a

valid test case V′ that covers g ; �nally, RALS replaces V with V′ in

) . To this end, RALS is capable of escaping from local optimum.

Discussion on How ScalableCA Handles Constraints. As

described in Section 2.2, an SUT can be encoded as a Boolean for-

mula [2, 5, 63, 64, 79], and the constraints of SUT correspond to the

clauses of Boolean formula; hence, constraints are incorporated into

Boolean formula. Particularly, SamplingCA invokes a SAT solver

named ContextSAT [61] to handle the encoded Boolean formula,

for e�ectively generating valid test cases (in Sections 4.3 and 4.4)

and examining tuples’ validity status (in Section 4.2). Through this

way, ScalableCA can e�ectively handle constraints.

5 Experimental Design

In this section, we present the experimental design of this work.

5.1 Public Instances and Competitors

We use a set of 122 large-scale, public instances, all of which are

collected from practical applications. The instances adopted in our

experiments are the same as the ones used in our empirical study

(Section 3.2), where the information of these instances is introduced.

As discussed in Section 3.1, both SamplingCA [61] andCAmpactor

[97] represent the state of the art in generating covering array. Thus,

we compare ScalableCA against SamplingCA and CAmpactor .

SamplingCA [61] is a recently-proposed algorithm that has

achieved the state-of-the-art performance in building covering ar-

rays. The experiments in the literature [61] show that SamplingCA

greatly outperforms various algorithms (including AutoCCAG [52],

FastCA [42], TCA [44], CASA [18, 19], HHSA [27] and ACTS [94]) in

generating 2-wise CA. In this work, we evaluated the latest version

of SamplingCA, whose implementation is available online.2

CAmpactor [97] is the current best algorithm for compacting

a given covering array. As reported in the literature [97], when

constructing 2-wise CA, CAmpactor greatly outperforms existing

algorithms, including SamplingCA, AutoCCAG, FastCA, TCA, CASA,

HHSA, ACTS and CTLog [1]. In this work, CAmpactor is tested using

its latest version, whose source code is available online.3

Besides SamplingCA andCAmpactor , we also compare ScalableCA

against 7 well-known algorithms from various categories of CCAG

algorithms, i.e., Calot [92] from the category of constraint-encoding

algorithms, AETG [12] from the category of greedy algorithms,

ACTS [94] and JCunit [82, 83] from the category of incremental

generation algorithms, as well as TCA [44], FastCA [42, 43] and

AutoCCAG [52] from the category of meta-heuristic algorithms.

However, our evaluations present that, due to the severe scalability

challenge, those 7 algorithms fail to generate 3-wise CAs for the

2https://github.com/chuanluocs/SamplingCA/tree/general
3https://github.com/chuanluocs/CAmpactor/tree/general

647

https://github.com/chuanluocs/SamplingCA/tree/general
https://github.com/chuanluocs/CAmpactor/tree/general

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chuan Luo, Shuangyu Lyu, Qiyuan Zhao, Wei Wu, Hongyu Zhang, and Chunming Hu

majority of large-scale instances. To save space, we do not present

the results of these 7 algorithms in this paper. The results of these

7 algorithms are publicly available at our repository.1

5.2 Research Questions

Since this work is devoted to alleviating the severe scalability chal-

lenge for 3-wise CIT, our experiments target to minimize the size of

constructed 3-wise CA and meanwhile reduce the running time on

large-scale instances. Our experiments aim to answer the following

research questions (RQs).

RQ1: Can ScalableCA construct 3-wise CA of smaller size

than its state-of-the-art competitors on large-scale instances?

In this RQ, we evaluate the sizes of the 3-wise CAs generated by

ScalableCA, SamplingCA and CAmpactor , on large-scale instances.

RQ2: Does ScalableCA require less running time to build

3-wise CA compared to its state-of-the-art competitors on

large-scale instances?

In this RQ,we empirically compare the running time of ScalableCA

against that of SamplingCA and CAmpactor on large-scale instances.

RQ3: Does each core technique proposed in this work con-

tribute to the performance improvement of ScalableCA?

In this RQ, we empirically analyze the contribution made by

each core technique to ScalableCA’s performance improvement.

RQ4: How does the setting of each hyper-parameter a�ect

the practical performance of ScalableCA?

In this RQ, we empirically investigate how the settings of hyper-

parameters (i.e., X and !) impact ScalableCA’s performance.

5.3 Experimental Setup

In this work, all experiments were performed on a computing ma-

chine that is equipped with AMD EPYC 7763 CPU and 1TB memory,

running the operating system of Ubuntu 20.04.4 LTS.

ScalableCA and its competitors are all randomized algorithms,

so each competing algorithm is performed 10 independent runs

per instance. As discussed in Section 3.1, due to the scalability chal-

lenge for 3-wise CIT, all ScalableCA’s competitors (i.e., SamplingCA,

CAmpactor and other 7 competitors) are ine�ective in building

3-wise CAs for highly con�gurable systems. According to our pre-

liminary experiments, SamplingCA and CAmpactor could construct

3-wise CAs for all adopted instances within 2 CPU days. Hence, to

make them successfully generate 3-wise CAs, in our experiments

the cuto� time for each algorithm run is set to 172,800 CPU sec-

onds (i.e., 2 CPU days). Besides SamplingCA and CAmpactor , our

evaluations show that the other 7 competitors cannot generate 3-

wise CAs for the majority of large-scale instances within the cuto�

time of 2 CPU days, and their detailed experimental results on all

large-scale instances are publicly available at our repository.1 For

ScalableCA, we set its hyper-parameters X and ! to 100 and 500,

respectively. The e�ects of X and ! will be analyzed in Section 6.4.

For SamplingCA and CAmpactor , we adopt the hyper-parameter

settings suggested by their respective authors [61, 97].

Following the recent work [97], for each competing algorithm

on solving each instance, we present the minimum size of the con-

structed 3-wise CAs among 10 independent runs, denoted as ‘min.’,

the average size of the constructed 3-wise CAs over 10 runs, de-

noted as ‘avg.’, and the average running time over 10 runs, denoted

Table 2: Average size and average time of ScalableCA,

SamplingCA and CAmpactor over all large-scale instances

.

ScalableCA SamplingCA CAmpactor

avg. size 526.5 903.9 862.1
avg. time (sec) 1,778.3 67,198.6 167,433.9

Table 3: Comparative results of ScalableCA, SamplingCA and

CAmpactor on 10 representative, large-scale instances.

Instance
ScalableCA SamplingCA CAmpactor

min. (avg.) min. (avg.) min. (avg.)
time (sec) time (sec) time (sec)

dreamcast
588 (608.0) 990 (1006.0) 953 (971.4)

1,717.5 73,565.4 171,407.3

ecos-icse11
517 (531.1) 896 (926.8) 856 (886.4)

1,771.7 67,822.0 171,864.0

freebsd-icse11
589 (616.0) 1,099 (1,109.4) 1,085 (1,097.2)

1,106.7 115,131.6 171,061.0

integrator_arm9
700 (728.2) 1,134 (1,151.5) 1,107 (1,127.0)

1,710.3 88,026.4 171,482.7

linux
567 (604.6) 1001 (1010.8) 963 (974.0)

1700.7 72198.3 171298.8

mpc50
474 (499.7) 828 (836.5) 772 (782.4)

1,566.1 56,886.3 171,534.7

ocelot
521 (541.2) 920 (930.4) 881 (893.2)

1,939.9 71,603.6 171,579.5

pc_i82544
526 (556.3) 964 (980.7) 929 (946.0)

2,178.4 74,234.9 171,460.5

refidt334
545 (575.0) 980 (998.9) 945 (965.7)

2,162.7 75,843.8 171,864.3

XSEngine
526 (544.6) 885 (917.0) 846 (878.7)

1,683.5 71,305.7 171,299.4

by ‘time’. Further, to evaluate the overall performance, for each

algorithm, we report the average size (denoted by ‘avg. size’) and

average running time (denoted by ‘avg. time’) to build 3-wise CA

over the set of large-scale instances. All running times are measured

in CPU second. For each instance or the set of large-scale instances,

if a competing algorithm builds the smallest-sized 3-wise CA, then

its results of ‘min.’, ‘avg.’ and ‘avg. size’ are indicated in boldface.

Moreover, for each large-scale instance or the set of large-scale

instances, we conduct the Wilcoxon signed-rank test [16] to deter-

mine the statistical signi�cance of pairwise comparisons between

ScalableCA and each of its competitors, and we compute the Vargha-

Delaney e�ect sizes [84] for all pairwise comparisons. Particularly,

we consider the following criteria: 1) all p-values of the Wilcoxon

signed-rank tests at a 95% con�dence level are less than 0.05, and

2) the Vargha-Delaney e�ect sizes for all pairwise comparisons

are greater than 0.71, which is known to imply large e�ect sizes

[52, 59, 61, 78, 84, 97]. If both criteria are met, we conclude that

the performance improvement of ScalableCA over its competitors

is both statistically signi�cant and meaningful, and ScalableCA’s

results of ‘min.’, ‘avg.’ and ‘avg. size’ are highlighted via underline.

6 Experimental Results

In this section, we report and discuss the experimental results.

648

Beyond Pairwise Testing: Advancing 3-wise Combinatorial Interaction Testing for Highly Configurable Systems ISSTA ’24, September 16–20, 2024, Vienna, Austria

6.1 RQ1: Comparison on Size of 3-wise CA

We compare ScalableCA against SamplingCA, CAmpactor and other

7 competitors on the set of 122 large-scale, public instances. Due

to page limit, we do not report the full results on all large-scale

instances in this paper. The full experimental results of ScalableCA

and all its competitors on all 122 large-scale instances are publicly

available in our repository.1 Nevertheless, to present the overall per-

formance of ScalableCA and its two competitors (i.e., SamplingCA

and CAmpactor), we summarize the average size and the aver-

age running time of ScalableCA, SamplingCA and CAmpactor on

all instances in Table 2. Also, to study the performance of on

a per-instance basis, the results of ScalableCA, SamplingCA and

CAmpactor on 10 selected instances are reported in Table 3; these 10

selected instances are recognized as representative ones according

to recent studies on testing highly con�gurable systems [59, 97].

From Tables 2 and 3, our ScalableCA algorithm stands out as

the best algorithm, and it constructs 3-wise CA of much smaller

size, compared to its state-of-the-art competitors, which presents

ScalableCA’s e�ectiveness. In particular, over the set of large-scale

instances, the average size of ScalableCA’s generated 3-wise CAs is

526.5, while this number for SamplingCA and CAmpactor is 903.9

and 862.1, respectively. Hence, ScalableCA generates 3-wise CA of

38.9% smaller size than current state-of-the-art algorithms, indicat-

ing the superiority of ScalableCA over its competitors. Our results

in Tables 2 and 3 demonstrate that ScalableCA considerably pushes

forward the state of the art in solving the 3-wise CCAG problem.

In addition, we empirically study whether ScalableCA’s built 3-

wise CA could obtain high C-wise coverage with 4 ≤ C ≤ 6. To save

space, the related results are publicly available at our repository.1

6.2 RQ2: Comparison on Running Time

In this subsection, we analyze the e�ciency of ScalableCA. Tables

2 and 3 also present the average running time of ScalableCA and

its competitors. Table 2 shows that, over the set of large-scale in-

stances, the average running time of ScalableCA is 1,778.3 seconds,

while that of SamplingCA and CAmpactor is 67,198.6 seconds and

167,433.9 seconds, respectively. Moreover, from Table 3, ScalableCA

requires much less running time than SamplingCA and CAmpactor

on 10 selected instances. Thus, according to Tables 2 and 3, when

building 3-wise CAs for highly con�gurable systems, ScalableCA

runs one to two orders of magnitude faster than its state-of-the-art

competitors, which presents the high e�ciency of ScalableCA.

To this end, compared to current state-of-the-art algorithms,

ScalableCA can construct 3-wise CA of signi�cantly smaller size,

using much less running time, which con�rms that ScalableCA is

able to e�ectively alleviate the scalable challenge for 3-wise CIT.

6.3 RQ3: E�ectiveness of Each Core Technique

Here we empirically study the e�ectiveness of each core technique

proposed by ScalableCA. As introduced in Section 4, ScalableCA

introduces three novel, core techniques, i.e., fast invalidity detection

(FID) technique in the initialization stage (Section 4.2), uncovering-

guided sampling (UGS) method in the sampling stage (Section 4.3),

and remainder-aware local search (RALS) approach in the optimiza-

tion stage (Section 4.4). To study the e�ectiveness of FID, based on

ScalableCA we develop an alternative version named Alt-1, which

Table 4: Average size and average time of ScalableCA and its

alternative versions over all large-scale instances

.

ScalableCA Alt-1 Alt-2 Alt-3 Alt-4 Alt-5

avg. size 526.5 526.5 618.6 780.8 714.6 650.4
avg. time (sec) 1,778.3 2,867.2 9,059.1 772.3 167,101.3 22,764.7

Table 5: Average size and average time of ScalableCA with

various settings of % over all large-scale instances.

X = 10 X = 50 X = 100 X = 500 X = 1, 000

avg. size 553.5 533.4 526.5 513.7 504.1
avg. time (sec) 1,796.8 1,751.8 1,778.3 2,235.6 2,969.9

Table 6: Average size and average time of ScalableCA with

various settings of R over all large-scale instances.

! = 100 ! = 250 ! = 500 ! = 750 ! = 1, 000

avg. size 606.1 551.1 526.5 515.3 508.4
avg. time (sec) 1,089.4 1,387.8 1,778.3 1,925.5 2,234.2

directly works without FID. For investigating the contribution made

by UGS, we design an alternative version of ScalableCA called Alt-2,

which replacesUGSwith the existing context-aware sampling (CAS)

method [59, 61] (as discussed in Section 4.3). To analyze the e�ec-

tiveness of RALS, we develop two alternative versions, i.e., Alt-3 and

Alt-4. Alt-3 is ScalableCA’s alternative version that works without

RALS. Alt-4 is ScalableCA’s alternative version that replaces RALS

with CAmpactor ; that is, Alt-4 employs CAmpactor to optimize the

whole 3-wise CA built by ScalableCA’s sampling stage. Further, as

discussed in Section 4.2, ScalableCA invokes SamplingCA to build

2-wise CA in the initialization stage. Actually, there is another alter-

native version Alt-5 that calls CAmpactor for 2-wise CA generation.

Here, ScalableCA is compared with all its �ve alternative versions.

Table 4 presents the average size and the average running time of

ScalableCA and all its alternative versions. From Table 4, although

ScalableCA and Alt-1 achieve the same average size, the average

running time of ScalableCA and Alt-1 is 1778.3 seconds and 2867.2

seconds, respectively; this is not surprising, since FID only accel-

erates the process of obtaining the remaining set* (as discussed

in Section 4.2). Further, according to our statistical analysis, the

average numbers of SAT solver calls with and without the FID tech-

nique are 14,901,965.7 and 398,744,187.5, respectively, and this is

the reason why FID greatly improves the e�ciency of ScalableCA.

Also, Table 4 shows that ScalableCA generates much smaller-

sized 3-wise CA than Alt-2, Alt-3 and Alt-4, indicating the e�ective-

ness of UGS and RALS. Here we discuss the e�ciency. From Table 4,

it is not surprising that ScalableCA needs more running time than

Alt-3, since there is no optimization stage in Alt-3. The pairwise

comparison between ScalableCA and Alt-3 shows that, on average

with around 1,000 seconds more, RALS helps ScalableCA reduce

the generated 3-wise CA’s size by more than 250 (i.e., decreasing

the size by 32.6%). In practice, the size of test suite directly a�ects

the testing budget [43, 44, 52, 70], con�rming the e�ectiveness of

RALS. Moreover, ScalableCA runs much faster than Alt-2 and Alt-4,

showing the high e�ciency of UGS and RALS. When compared to

649

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chuan Luo, Shuangyu Lyu, Qiyuan Zhao, Wei Wu, Hongyu Zhang, and Chunming Hu

Table 7: Comparative results of ScalableCA, SamplingCA,

CAmpactor and AutoCCAG on 5 small-scale instances.

Instance
ScalableCA SamplingCA CAmpactor AutoCCAG

min. (avg.) min. (avg.) min. (avg.) min. (avg.)
time (sec) time (sec) time (sec) time (sec)

apache
134 (134.7) 238 (242.9) 185 (196.6) 135 (136.6)

931.63 180.44 1024.55 837.16

bugzilla
48 (48.0) 82 (84.0) 48 (48.0) 48 (48.0)

45.21 2.03 16.89 10.77

gcc 72 (73.1) 128 (130.2) 86 (90.6) 73 (74.7)
892.12 115.22 1108.51 773.83

spins
80 (80.0) 118 (120.4) 80 (81.3) 80 (80.0)

268.13 0.51 94.65 1.42

spinv
190 (190.3) 282 (286.1) 199 (203.6) 191 (192.9)

342.01 17.76 1179.74 947.13

Alt-5, on average ScalableCA takes much less running time to con-

struct 3-wise CA of greatly smaller size, presenting the substantial

advantage of adopting SamplingCA for building 2-wise CA.

In summary, the results in Table 4 con�rm that each core tech-

nique contributes to the performance improvement of ScalableCA.

6.4 RQ4: Impacts of Hyper-Parameter Settings

ScalableCA has two hyper-parameters, i.e., X and !. According to

Sections 4.3 and 4.4, X determines the cardinality of candidate set

in the sampling phase, while ! controls the termination criterion of

ScalableCA. Here, we analyze the impacts of the settings of X and !.

Table 5 reports the results of ScalableCA with di�erent settings

of X (i.e., setting X to 10, 50 100, 500 and 1, 000). From 5, ScalableCA

exhibits both e�ectiveness and e�ciency when X is set to 100. Thus,

the guideline of determining X ’s value is to set X = 100.

Also, Table 6 presents the results of ScalableCA with di�erent

settings of ! (i.e., setting ! to 100, 250, 500, 750 and 1, 000). As

observed in Table 6, if ! is set to a larger value, then ScalableCA

can build 3-wise CA of smaller size while it requires more running

time; otherwise, ScalableCA runs much faster while the generated

3-wise CA is of larger size. Our results indicate the �exibility of

ScalableCA, since adjusting ! can balance the e�ectiveness and

the e�ciency of ScalableCA. Therefore, the guideline of setting !’s

value is as follows. If ScalableCA is applied in the scenario which

desires small test suite, we recommend setting ! to a large value (e.g.,

! = 1, 000); otherwise, if rapid generation of test suite is required,

we recommend setting ! to a small value (e.g., ! = 100). Besides, if

ScalableCA is adopted in a scenario where both e�ectiveness and

e�ciency are considered, we recommend setting ! = 500.

7 Discussions

In this section, we discuss ScalableCA’s performance on small-scale

instances and ScalableCA’s fault detection capability. In addition,

we discuss the treats to the validity of this work.

7.1 Evaluation on Small-scale Instances

In addition to evaluating ScalableCA on large-scale instances, it is

also interesting to analyze its e�ectiveness on small-scale instances.

We include 25 small-scale, publicly available instances from our

repository1 for this purpose, which have also been utilized in the

original papers of AutoCCAG [52] and FastCA [42], both of which

are competitors of ScalableCA (as detailed in Section 5.1).

Compared to those 122 large-scale instances described in Section

5.1 (the average number of options is 1228.88), these 25 instances

are of much smaller scale (the average number of options is 31.24).

Besides, these 25 small-scale instances are of non-binary scenario,

where each option can be assigned to multiple possible values. To

enable ScalableCA to handle non-binary instances, given a non-

binary instance, ScalableCA �rst converts it into a Boolean formula

through the model �attening technique [23], where each value of a

non-binary option in the given non-binary instance is represented

by a binary variable in the converted Boolean formula, and then

ScalableCA processes the converted Boolean formula. We note that,

after converting those 25 small-scale instances into Boolean for-

mulae, the average number of options (i.e., the average number

of variables) over all 25 Boolean formulae is 61.96, which is still

considerably smaller than the average number of options over the

set of 122 large-scale instances. Further, when handling those 25

small-scale instances, ScalableCA activates AutoCCAG [52] after

the optimization stage of ScalableCA (Section 4.4) completes.

We evaluate ScalableCA, SamplingCA, CAmpactor , AutoCCAG

and other 7 competitors on the collection of 25 small-scale instances.

Due to page limit, we do not report the full experimental results

in this paper. The complete and detailed experimental results are

publicly available at our repository.1 Table 7 reports the compara-

tive results of ScalableCA, SamplingCA, CAmpactor and AutoCCAG

on 5 small-scale instances out of the entire collection. According

to the comparative results, ScalableCA builts 3-wise CAs of the

smallest sizes compared to all its competitors, thus indicating that

ScalableCA exhibits e�ectiveness in handling small-scale instances.

7.2 Study on Fault Detection Capability

In this subsection, we conduct an empirical evaluation to assess

ScalableCA’s fault detection capability on real-world, highly con-

�gurable systems. In order to achieve this target, we employ 9 real-

world, highly con�gurable systems as our subjects, all of which are

originally collected and utilized by a recent empirical study [87].

Each of these subjects consists of a model �le describing option

information, a constraint �le detailing constraint information, and

a ground-truth �le (i.e., a �le recording a list of ground-truth tuples

that can trigger faults, essential for calculating the fault detection

rate). We note that these 9 subjects adopted in our evaluation are

publicly available at our repository.1

Our evaluation adopts fault detection rate (‘FDR’) and size of

CA as assessment metrics. Given a subject and a CA) ,) ’s fault

detection rate on the subject is calculated as the ratio between the

number of) ’s detected faults and the total number of faults that

are recorded in the subject’s ground-truth �le. Table 8 reports the

average fault detection rate and average size of 3-wise CAs built

by ScalableCA, SamplingCA and CAmpactor , as well as 2-wise CAs

built by SamplingCA and CAmpactor over 9 subjects. The detailed

results on each subject are publicly available at our repository.1

From Table 8, it is clear that 3-wise CA exhibits much stronger fault

detection capability than 2-wise CA, which con�rms the signi�-

cance of generating 3-wise CA. Also, Table 8 shows that the 3-wise

CA built by ScalableCA can disclose more faults than the 2-wise CAs

and 3-wise CAs built by SamplingCA and CAmpactor , indicating

the practical value of ScalableCA in real-world applications.

650

Beyond Pairwise Testing: Advancing 3-wise Combinatorial Interaction Testing for Highly Configurable Systems ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 8: Average FDR and average size of CAs by ScalableCA,

SamplingCA and CAmpactor over 9 subjects.

3-wise CA 2-wise CA

ScalableCA SamplingCA CAmpactor SamplingCA CAmpactor

avg. FDR 96.8% 94.3% 93.8% 80.0% 80.7%
avg. size 70.7 80.5 73.1 24.7 22.3

7.3 Threats to Validity

Two potential threats to the validity of this work are identi�ed.

Generality of Instances. To make our evaluation thorough,

it is critical to keep the generality of our used instances. We em-

ploy a diverse set of 122 large-scale instances and 25 small-scale

instances, all of which are encoded from real-world highly con-

�gurable systems. These instances encompass a wide spectrum

of options and constraints and have been extensively evaluated

[4, 30, 41, 42, 52, 59, 61, 69, 74, 75], so they are general and repre-

sentative. Thus, this potential threat can be mitigated.

Random Characteristic of Competing Algorithms. In our

experiments, all competing algorithms are randomized, relying

on a single run per instance may not yield precise evaluations.

To address this issue, we conduct 10 independent runs for each

algorithm per instance, following recent studies [43, 44, 52]. Further,

we perform signi�cance test and compute e�ect size for analyzing

the comparative results, thereby reducing this potential threat.

8 Related Work

Combinatorial interaction testing (CIT) is pivotal in software testing

with extensive studies (e.g., [32, 68, 80, 95]). Although pairwise

testing (i.e., 2-wise CIT) is popular, empirical studies on extensive

highly con�gurable systems show that 3-wise CIT reveals more

faults, emphasizing its importance [33–36, 43, 52].

Constrained covering array generation (CCAG) is the core prob-

lem in CIT [44, 61, 97], and practical CCAG algorithms can be

grouped into four categories, i.e., constraint-encoding algorithms

(e.g., [1, 3, 24, 92, 96]), greedy algorithms (e.g., [8–10, 12, 81, 91]), in-

cremental generation algorithms (e.g., [29, 31, 37–39, 82, 83, 85, 94]),

and meta-heuristic algorithms (e.g., [8, 13–15, 18, 20, 21, 27, 43, 44,

52, 62, 90]). Constraint-encoding algorithms (e.g., Calot [92]) trans-

late CCAG into other optimization problems but struggle with large-

scale instances [1, 3, 24, 92, 96]. Greedy algorithms (e.g., AETG [12])

employ the one-test-at-a-time (OTAT) strategy for constructing

CAs in a greedy manner. Incremental generation algorithms (e.g.,

ACTS [94] and JCunit [82, 83]) adopt the in-parameter-order (IPO)

technique and operate iteratively on existing CAs. Initially, they

generate a CA for a small subset of all options, and then they itera-

tively introduce new options until a complete CA for all options

is achieved. While e�ective for managing medium-scale instances,

these two types of methods usually generate large CAs, thereby

limiting their applicability in time-constrained scenarios. Meta-

heuristic algorithms (e.g., TCA [44], FastCA [42, 43] and AutoCCAG

[52]), which conduct advanced meta-heuristic search techniques,

can generate small CAs, but they cost fairly long running time.

Existing CCAG algorithms su�er from the severe scalability chal-

lenge. With many options exposed by highly con�gurable systems,

these algorithms usually need considerable running time to pro-

duce large-sized CAs, rendering testing ine�cient. To mitigate the

scalability challenge, two recent cutting-edge CCAG algorithms, i.e.,

SamplingCA [61] and CAmpactor [97], have been developed. How-

ever, both SamplingCA and CAmpactor only address the scalability

challenge for pairwise testing, and the serious scalability challenge

still persists for 3-wise CIT, as highly con�gurable systems involve

immense numbers of valid 3-wise tuples. Our experimental results

(Section 6) con�rm that both SamplingCA and CAmpactor exhibit

limitations in e�ectively and e�ciently building 3-wise CAs for

various real-world, highly con�gurable systems, which urgently

calls for practical solutions to the 3-wise CCAG problem.

This work proposes ScalableCA, a novel and scalable algorithm

that demonstrates e�ectiveness and e�ciency in solving large-

scale 3-wise CCAG instances. In contrast to existing CCAG algo-

rithms, ScalableCA can generate small-sized 3-wise CAs e�ciently

for highly con�gurable systems, indicating that ScalableCA e�ec-

tively alleviates the scalability challenge for 3-wise CIT. Therefore,

the adoption of ScalableCA could show advantages in practice.

9 Conclusion

In this work, we aim to alleviate the severe scalability challenge

for 3-wise CIT. Through an empirical study on various highly con-

�gurable systems, we observe that 2-wise CA covers the majority

of valid 3-wise tuples. Hence, a potential solution to the scalabil-

ity challenge for 3-wise CIT is to build 3-wise CA by extending

2-wise CA. Based on this potential solution, we propose a scalable

algorithm dubbed ScalableCA. Further, ScalableCA proposes three

novel techniques, i.e., fast invalidity detection, uncovering-guided

sampling, and remainder-aware local search, to enhance its perfor-

mance. Our experiments on extensive large-scale instances show

that, compared to existing state-of-the-art algorithms, ScalableCA

runs one to two orders of magnitude faster to generate 3-wise CA

of 38.9% smaller size in average, indicating that ScalableCA can

e�ectively mitigate the scalability challenge for 3-wise CIT.

For future work, we plan to adopt ScalableCA to test highly

con�gurable systems in practice. Also, we plan to use automatic

tuning tools (e.g., SMAC [26] and TPE [6]) to con�gure ScalableCA.

10 Data Availability

The implementation of ScalableCA, all instances and results are pub-

licly available at https://github.com/chuanluocs/ScalableCA

and and archived at Zenodo [53].

Acknowledgments

This work was supported in part by the National Key Research and

Development Program of China under Grant 2023YFB3307503, in

part by the National Natural Science Foundation of China under

Grant 62202025 and Grant 62302528, in part by the Young Elite Sci-

entist Sponsorship Program by CAST under Grant YESS20230566,

in part by the CCF-Huawei Populus Grove Fund under Grant CCF-

HuaweiSY202311, in part by the Frontier Cross Fund Project of

Beihang University, in part by the Fundamental Research Fund

Project of Beihang University, in part by the Open Project of Xi-

angjiang Laboratory under Grant 22XJ03010, and in part by the

Natural Science Foundation of Changsha under Grant kq2202104.

651

https://github.com/chuanluocs/ScalableCA

ISSTA ’24, September 16–20, 2024, Vienna, Austria Chuan Luo, Shuangyu Lyu, Qiyuan Zhao, Wei Wu, Hongyu Zhang, and Chunming Hu

References
[1] Carlos Ansótegui, Felip Manyà, Jesus Ojeda, Josep M. Salvia, and Eduard Torres.

2022. Incomplete MaxSAT approaches for combinatorial testing. Journal of
Heuristics 28, 4 (2022), 377–431.

[2] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines - Concepts and Implementation. Springer.

[3] Mutsunori Banbara, Haruki Matsunaka, Naoyuki Tamura, and Katsumi Inoue.
2010. Generating Combinatorial Test Cases by E�cient SAT Encodings Suitable
for CDCL SAT Solvers. In Proceedings of LPAR 2010. 112–126.

[4] Eduard Baranov, Axel Legay, and Kuldeep S. Meel. 2020. Baital: An Adaptive
Weighted Sampling Approach for Improved t-wise Coverage. In Proceedings of
ESEC/FSE 2020. 1114–1126.

[5] Don S. Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In
Proceedings of SPLC 2005. 7–20.

[6] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms
for Hyper-Parameter Optimization. In Proceedings of NIPS 2011. 2546–2554.

[7] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.). 2021.
Handbook of Satis�ability - Second Edition. Frontiers in Arti�cial Intelligence and
Applications, Vol. 336. IOS Press.

[8] Renée C. Bryce and Charles J. Colbourn. 2007. The Density Algorithm for
Pairwise Interaction Testing. Software Testing, Veri�cation and Reliability 17, 3
(2007), 159–182.

[9] Renée C. Bryce and Charles J. Colbourn. 2009. A Density-based Greedy Algorithm
for Higher Strength Covering Arrays. Software Testing, Veri�cation and Reliability
19, 1 (2009), 37–53.

[10] Renée C. Bryce, Charles J. Colbourn, and Myra B. Cohen. 2005. A Framework of
Greedy Methods for Constructing Interaction Test Suites. In Proceedings of ICSE
2005. 146–155.

[11] Yi Chu, Shaowei Cai, and Chuan Luo. 2023. NuWLS: Improving Local Search
for (Weighted) Partial MaxSAT by New Weighting Techniques. In Proceedings of
AAAI 2023. 3915–3923.

[12] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton.
1997. The AETG System: An Approach to Testing Based on Combinatorial Design.
IEEE Transactions on Software Engineering 23, 7 (1997), 437–444.

[13] Myra B. Cohen, Charles J. Colbourn, and Alan C. H. Ling. 2003. Augmenting
Simulated Annealing to Build Interaction Test Suites. In Proceedings of ISSRE 2003.
394–405.

[14] Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, and Charles J. Colbourn.
2003. Constructing Test Suites for Interaction Testing. In Proceedings ICSE 2003.
38–48.

[15] Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, Charles J. Colbourn, and
James S. Collofello. 2003. A Variable Strength Interaction Testing of Components.
In Proceedings of COMPAC 2003. 413–418.

[16] W. J. Conover. 1999. Practical Nonparametric Statistics. Conover.
[17] Niklas Eén and Niklas Sörensson. 2003. An Extensible SAT-solver. In Proceedings

of SAT 2003. 502–518.
[18] Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer. 2009. An Improved

Meta-Heuristic Search for Constrained Interaction Testing. In Proceedings of
International Symposium on Search Based Software Engineering 2009. 13–22.

[19] Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer. 2011. Evaluating
Improvements to a Meta-heuristic Search for Constrained Interaction Testing.
Empirical Software Engineering 16, 1 (2011), 61–102.

[20] Syed A. Ghazi and Moataz A. Ahmed. 2003. Pair-wise Test Coverage using
Genetic Algorithms. In Proceedings of CEC 2003. 1420–1424.

[21] Loreto Gonzalez-Hernandez, Nelson Rangel-Valdez, and Jose Torres-Jimenez.
2010. Construction of Mixed Covering Arrays of Variable Strength Using a Tabu
Search Approach. In Proceedings of COCOA 2010. 51–64.

[22] Jiazhen Gu, Chuan Luo, Si Qin, Bo Qiao, Qingwei Lin, Hongyu Zhang, Ze Li,
Yingnong Dang, Shaowei Cai, Wei Wu, Yangfan Zhou, Murali Chintalapati, and
Dongmei Zhang. 2020. E�cient Incident Identi�cation from Multi-dimensional
Issue Reports viaMeta-heuristic Search. In Proceedings of ESEC/FSE 2020. 292–303.

[23] Christopher Henard, Mike Papadakis, and Yves Le Traon. 2015. Flattening or not
of the combinatorial interaction testing models?. In Proceedings of ICSTWorkshops
2015. 1–4.

[24] Brahim Hnich, Steven David Prestwich, Evgeny Selensky, and Barbara M. Smith.
2006. Constraint Models for the Covering Test Problem. Constraints 11, 2-3
(2006), 199–219.

[25] Holger H. Hoos and Thomas Stützle. 2004. Stochastic Local Search: Foundations &
Applications. Elsevier / Morgan Kaufmann.

[26] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-
Based Optimization for General Algorithm Con�guration. In Proceedings of LION
2011. 507–523.

[27] Yue Jia, Myra B. Cohen, Mark Harman, and Justyna Petke. 2015. Learning Com-
binatorial Interaction Test Generation Strategies Using Hyperheuristic Search.
In Proceedings of ICSE 2015. 540–550.

[28] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo,
and Sven Apel. 2019. Distance-based Sampling of Software Con�guration Spaces.

In Proceedings of ICSE 2019. 1084–1094.
[29] Ludwig Kampel, Bernhard Garn, and Dimitris E. Simos. 2017. Combinatorial

Methods for Modelling Composed Software Systems. In Proceedings of ICSTW
2017. 229–238.

[30] Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke, and Ina
Schaefer. 2017. Is There a Mismatch between Real-world Feature Models and
Product-line Research?. In Proceedings of ESEC/FSE 2017. 291–302.

[31] Sebastian Krieter, Thomas Thüm, Sandro Schulze, Gunter Saake, and Thomas
Leich. 2020. YASA: yet another sampling algorithm. In Proceedings of VaMoS 2020.
4:1–4:10.

[32] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. 2013. Introduction to Combinatorial
Testing. CRC press.

[33] D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo. 2004. Software Fault
Interactions and Implications for Software Testing. IEEE Transactions on Software
Engineering 30, 6 (2004), 418–421.

[34] Rick Kuhn and Raghu Kacker. 2011. Practical combinatorial (t-way) methods for
detecting complex faults in regression testing. In Proceedings of ICSM 2011. 599.

[35] Rick Kuhn, Raghu Kacker, Yu Lei, and Justin Hunter. 2009. Combinatorial Soft-
ware Testing. Computer 42, 8 (2009), 94–96.

[36] Rick Kuhn, Yu Lei, and Raghu Kacker. 2008. Practical Combinatorial Testing:
Beyond Pairwise. IT Professional 10, 3 (2008), 19–23.

[37] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence. 2007.
IPOG: A General Strategy for T-Way Software Testing. In Proceedings of ECBS
2007. 549–556.

[38] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence. 2008.
IPOG/IPOG-D: E�cient Test Generation for Multi-way Combinatorial Testing.
Software Testing, Veri�cation and Reliability 18, 3 (2008), 125–148.

[39] Yu Lei and Kuo-Chung Tai. 1998. In-Parameter-Order: A Test Generation Strategy
for Pairwise Testing. In Proceedings of HASE 1998. 254–261.

[40] Chu Min Li and Wenqi Huang. 2005. Diversi�cation and Determinism in Local
Search for Satis�ability. In Proceedings of SAT 2005. 158–172.

[41] Jia Hui Liang, Vijay Ganesh, Krzysztof Czarnecki, and Venkatesh Raman. 2015.
SAT-based Analysis of Large Real-world Feature Models is Easy. In Proceedings
of SPLC 2015, Douglas C. Schmidt (Ed.). 91–100.

[42] Jinkun Lin, Shaowei Cai, Bing He, Yingjie Fu, Chuan Luo, and Qingwei Lin.
2021. FastCA: An E�ective and E�cient Tool for Combinatorial Covering Array
Generation. In Proceedings of ICSE 2021 (Companion Volume). 77–80.

[43] Jinkun Lin, Shaowei Cai, Chuan Luo, Qingwei Lin, and Hongyu Zhang. 2019.
Towards More E�cient Meta-heuristic Algorithms for Combinatorial Test Gen-
eration. In Proceedings of ESEC/FSE 2019. 212–222.

[44] Jinkun Lin, Chuan Luo, Shaowei Cai, Kaile Su, Dan Hao, and Lu Zhang. 2015.
TCA: An E�cient Two-Mode Meta-Heuristic Algorithm for Combinatorial Test
Generation. In Proceedings of ASE 2015. 494–505.

[45] Chuan Luo, Shaowei Cai, Kaile Su, and Wenxuan Huang. 2017. CCEHC: An
E�cient Local Search Algorithm for Weighted Partial Maximum Satis�ability.
Arti�cial Intelligence 243 (2017), 26–44.

[46] Chuan Luo, Shaowei Cai, Kaile Su, and Wei Wu. 2015. Clause States Based
Con�guration Checking in Local Search for Satis�ability. IEEE Transactions on
Cybernetics 45, 5 (2015), 1014–1027.

[47] Chuan Luo, Shaowei Cai, Wei Wu, Zhong Jie, and Kaile Su. 2015. CCLS: An
E�cient Local Search Algorithm for Weighted Maximum Satis�ability. IEEE
Transactions on Computers 64, 7 (2015), 1830–1843.

[48] Chuan Luo, Shaowei Cai, WeiWu, and Kaile Su. 2013. Focused RandomWalk with
Con�guration Checking and Break Minimum for Satis�ability. In Proceedings of
CP 2013. 481–496.

[49] Chuan Luo, Shaowei Cai, Wei Wu, and Kaile Su. 2014. Double Con�guration
Checking in Stochastic Local Search for Satis�ability. In Proceedings of AAAI
2014. 2703–2709.

[50] Chuan Luo, Holger H. Hoos, and Shaowei Cai. 2020. PbO-CCSAT: Boosting Local
Search for Satis�ability Using Programming by Optimisation. In Proceedings of
PPSN 2020. 373–389.

[51] Chuan Luo, Holger H. Hoos, Shaowei Cai, Qingwei Lin, Hongyu Zhang, and
Dongmei Zhang. 2019. Local Search with E�cient Automatic Con�guration for
Minimum Vertex Cover. In Proceedings of IJCAI 2019. 1297–1304.

[52] Chuan Luo, Jinkun Lin, Shaowei Cai, Xin Chen, Bing He, Bo Qiao, Pu Zhao,
Qingwei Lin, Hongyu Zhang, Wei Wu, Saravanakumar Rajmohan, and Dongmei
Zhang. 2021. AutoCCAG: An Automated Approach to Constrained Covering
Array Generation. In Proceedings of ICSE 2021. 201–212.

[53] Chuan Luo, Shuangyu Lyu, Qiyuan Zhao, Wei Wu, Hongyu Zhang, and Chun-
ming Hu. 2024. Artifact for ISSTA 2024 Article ‘Beyond Pairwise Testing: Advanc-
ing 3-wise Combinatorial Interaction Testing for Highly Con�gurable Systems’.
https://doi.org/10.5281/zenodo.12661302

[54] Chuan Luo, Bo Qiao, Xin Chen, Pu Zhao, Randolph Yao, Hongyu Zhang, Wei Wu,
Andrew Zhou, and Qingwei Lin. 2020. Intelligent Virtual Machine Provisioning
in Cloud Computing. In Proceedings of IJCAI 2020. 1495–1502.

[55] Chuan Luo, Bo Qiao, Wenqian Xing, Xin Chen, Pu Zhao, Chao Du, Randolph Yao,
Hongyu Zhang, Wei Wu, Shaowei Cai, Bing He, Saravanakumar Rajmohan, and
Qingwei Lin. 2021. Correlation-Aware Heuristic Search for Intelligent Virtual

652

https://doi.org/10.5281/zenodo.12661302

Beyond Pairwise Testing: Advancing 3-wise Combinatorial Interaction Testing for Highly Configurable Systems ISSTA ’24, September 16–20, 2024, Vienna, Austria

Machine Provisioning in Cloud Systems. In Proceedings of AAAI 2021. 12363–
12372.

[56] Chuan Luo, Jianping Song, Qiyuan Zhao, Binqi Sun, Junjie Chen, Hongyu Zhang,
Jinkun Lin, and Chunming Hu. 2024. Solving the t-wise CoverageMaximum Prob-
lem via E�ective and E�cient Local Search-based Sampling. ACM Transactions
on Software Engineering and Methodology (2024).

[57] Chuan Luo, Kaile Su, and Shaowei Cai. 2012. Improving Local Search for Random
3-SAT Using Quantitative Con�guration Checking. In Proceedings of ECAI 2012.
570–575.

[58] Chuan Luo, Kaile Su, and Shaowei Cai. 2014. More e�cient two-mode stochastic
local search for random 3-satis�ability. Applied Intelligence 41, 3 (2014), 665–680.

[59] Chuan Luo, Binqi Sun, Bo Qiao, Junjie Chen, Hongyu Zhang, Jinkun Lin, Qing-
wei Lin, and Dongmei Zhang. 2021. LS-Sampling: An E�ective Local Search
based Sampling Approach for Achieving High t-wise Coverage. In Proceedings of
ESEC/FSE 2021. 1081–1092.

[60] Chuan Luo, Wenqian Xing, Shaowei Cai, and Chunming Hu. 2024. NuSC: An
E�ective Local Search Algorithm for Solving the Set Covering Problem. IEEE
Transactions on Cybernetics 54, 3 (2024), 1403–1416.

[61] Chuan Luo, Qiyuan Zhao, Shaowei Cai, Hongyu Zhang, and Chunming Hu. 2022.
SamplingCA: E�ective and E�cient Sampling-Based Pairwise Testing for Highly
Con�gurable Software Systems. In Proceedings of ESEC/FSE 2022. 1185–1197.

[62] James D. McCa�rey. 2009. Generation of Pairwise Test Sets Using a Genetic
Algorithm. In Proceedings of COMPSAC 2009. 626–631.

[63] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A Comparison of 10 Sampling Algorithms for Con�gurable Systems. In
Proceedings of ICSE 2016. 643–654.

[64] Marcílio Mendonça, Andrzej Wasowski, and Krzysztof Czarnecki. 2009. SAT-
based Analysis of Feature Models is Easy. In Proceedings of SPLC 2009. 231–240.

[65] Hane� Mercan, Cemal Yilmaz, and Kamer Kaya. 2019. CHiP: A Con�gurable
Hybrid Parallel Covering Array Constructor. IEEE Transactions on Software
Engineering 45, 12 (2019), 1270–1291.

[66] Wil Michiels, Emile H. L. Aarts, and Jan H. M. Korst. 2007. Theoretical aspects of
local search. Springer.

[67] Stefan Mühlbauer, Florian Sattler, Christian Kaltenecker, Johannes Dorn, Sven
Apel, and Norbert Siegmund. 2023. Analysing the Impact of Workloads on
Modeling the Performance of Con�gurable Software Systems. In Proceedings of
ICSE 2023. 2085–2097.

[68] Changhai Nie and Hareton Leung. 2011. A Survey of Combinatorial Testing.
Comput. Surveys 43, 2 (2011), 11:1–11:29.

[69] Jeho Oh, Paul Gazzillo, and Don S. Batory. 2019. t-wise Coverage by Uniform
Sampling. In Proceedings of SPLC 2019. 15:1–15:4.

[70] Rongqi Pan, Taher A. Ghaleb, and Lionel Briand. 2023. ATM: Black-box Test
Case Minimization based on Test Code Similarity and Evolutionary Search. In
Proceedings of ICSE 2023. 1700–1711.

[71] Mingyu Park, Hoon Jang, Taejoon Byun, and Yunja Choi. 2020. Property-based
testing for LG home appliances using accelerated software-in-the-loop simulation.
In Proceedings of ICSE-SEIP 2020. 120–129.

[72] Justyna Petke, Myra B. Cohen, Mark Harman, and Shin Yoo. 2015. Practical
Combinatorial Interaction Testing: Empirical Findings on E�ciency and Early
Fault Detection. IEEE Transactions on Software Engineering 41, 9 (2015), 901–924.

[73] Justyna Petke, Shin Yoo, Myra B. Cohen, and Mark Harman. 2013. E�ciency and
early fault detection with lower and higher strength combinatorial interaction
testing. In Proceedings of ESEC/FSE 2013. 26–36.

[74] Tobias Pett, Thomas Thüm, Tobias Runge, Sebastian Krieter, Malte Lochau, and
Ina Schaefer. 2019. Product Sampling for Product Lines: The Scalability Challenge.
In Proceedings of SPLC 2019. 14:1–14:6.

[75] Quentin Plazar, Mathieu Acher, Gilles Perrouin, Xavier Devroey, and Maxime
Cordy. 2019. Uniform Sampling of SAT Solutions for Con�gurable Systems: Are
We There Yet?. In Proceedings of ICST 2019. 240–251.

[76] Steven D. Prestwich. 2021. CNF Encodings. In Handbook of Satis�ability - Second
Edition, Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.).
Frontiers in Arti�cial Intelligence and Applications, Vol. 336. IOS Press, 75–100.

[77] Bo Qiao, Fangkai Yang, Chuan Luo, YananWang, Johnny Li, Qingwei Lin, Hongyu
Zhang, Mohit Datta, Andrew Zhou, Thomas Moscibroda, Saravanakumar Rajmo-
han, and Dongmei Zhang. 2021. Intelligent Container Reallocation at Microsoft

365. In Proceedings of ESEC/FSE 2021. 1438–1443.
[78] Federica Sarro, Mark Harman, Yue Jia, and Yuanyuan Zhang. 2018. Customer

Rating Reactions Can Be Predicted Purely using App Features. In Proceedings of
RE 2018. 76–87.

[79] Jing Sun, Hongyu Zhang, Yuan-Fang Li, and Hai H.Wang. 2005. Formal Semantics
and Veri�cation for Feature Modeling. In Proceedings of ICECCS 2005. 303–312.

[80] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
2014. A Classi�cation and Survey of Analysis Strategies for Software Product
Lines. ACM Computing Surveys 47, 1 (2014), 6:1–6:45.

[81] Yu-Wen Tung and Wafa S. Aldiwan. 2000. Automating Test Case Generation for
the New Generation Mission Software System. In Proceedings of IEEE Aerospace
Conference 2000. 431–437.

[82] Hiroshi Ukai, Xiao Qu, Hironori Washizaki, and Yoshiaki Fukazawa. 2019. Reduce
Test Cost by Reusing Test Oracles through Combinatorial Join. In Proceedngs of
ICSTW 2019. 260–263.

[83] Hiroshi Ukai, Xiao Qu, Hironori Washizaki, and Yoshiaki Fukazawa. 2022. Ac-
celerating Covering Array Generation by Combinatorial Join for Industry Scale
Software Testing. PeerJ Computer Science 8 (2022), e720.

[84] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the
CL Common Language E�ect Size Statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[85] Ziyuan Wang, Changhai Nie, and Baowen Xu. 2007. Generating Combinatorial
Test Suite for Interaction Relationship. In Proceedings of SOQUA 2007. 55–61.

[86] Max Weber, Christian Kaltenecker, Florian Sattler, Sven Apel, and Norbert Sieg-
mund. 2023. Twins or False Friends? A Study on Energy Consumption and
Performance of Con�gurable Software. In Proceedings of ICSE 2023. 2098–2110.

[87] Huayao Wu, Changhai Nie, Justyna Petke, Yue Jia, and Mark Harman. 2020. An
Empirical Comparison of Combinatorial Testing, Random Testing and Adaptive
Random Testing. IEEE Transactions on Software Engineering 46, 3 (2020), 302–320.

[88] Huayao Wu, Changhai Nie, Justyna Petke, Yue Jia, and Mark Harman. 2021.
Comparative Analysis of Constraint Handling Techniques for Constrained Com-
binatorial Testing. IEEE Transactions on Software Engineering 47, 11 (2021),
2549–2562.

[89] Yi Xiang, Han Huang, Miqing Li, Sizhe Li, and Xiaowei Yang. 2022. Looking For
Novelty in Search-Based Software Product Line Testing. IEEE Transactions on
Software Engineering 48, 7 (2022), 2317–2338.

[90] Yi Xiang, Han Huang, Sizhe Li, Miqing Li, Chuan Luo, and Xiaowei Yang. 2024.
Automated Test Suite Generation for Software Product Lines Based on Quality-
Diversity Optimization. ACM Transactions on Software Engineering and Method-
ology 33, 2 (2024), 46:1–46:52.

[91] Akihisa Yamada, Armin Biere, Cyrille Artho, Takashi Kitamura, and Eun-Hye
Choi. 2016. Greedy Combinatorial Test Case Generation using Unsatis�able
Cores. In Proceedings of ASE 2016. 614–624.

[92] Akihisa Yamada, Takashi Kitamura, Cyrille Artho, Eun-Hye Choi, Yutaka Oiwa,
and Armin Biere. 2015. Optimization of Combinatorial Testing by Incremental
SAT Solving. In Proceedings of ICST 2015. 1–10.

[93] Cemal Yilmaz, Myra B. Cohen, and Adam A. Porter. 2006. Covering Arrays
for E�cient Fault Characterization in Complex Con�guration Spaces. IEEE
Transactions on Software Engineering 32, 1 (2006), 20–34.

[94] Linbin Yu, Yu Lei, Mehra Nouroz Borazjany, Raghu Kacker, and D. Richard Kuhn.
2013. An E�cient Algorithm for Constraint Handling in Combinatorial Test
Generation. In Proceedings of ICST 2013. 242–251.

[95] Jian Zhang, Zhiqiang Zhang, and Feifei Ma. 2014. Automatic Generation of
Combinatorial Test Data. Springer.

[96] Zhiqiang Zhang, Jun Yan, Yong Zhao, and Jian Zhang. 2014. Generating Combi-
natorial Test Suite using Combinatorial Optimization. Journal of Systems and
Software 98 (2014), 191–207.

[97] Qiyuan Zhao, Chuan Luo, Shaowei Cai, Wei Wu, Jinkun Lin, Hongyu Zhang, and
Chunming Hu. 2023. CAmpactor: A Novel and E�ective Local Search Algorithm
for Optimizing Pairwise Covering Arrays. In Proceedings of ESEC/FSE 2023. 81–93.

Received 2024-04-12; accepted 2024-07-03

653

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Combinatorial Interaction Testing
	2.2 Boolean Formulae

	3 Challenge, Study and Solution
	3.1 Scalability Challenge for 3-wise CIT
	3.2 Empirical Study
	3.3 Potential Solution

	4 Our Proposed ScalableCA Algorithm
	4.1 Overall Design of ScalableCA
	4.2 Initialization Stage
	4.3 Sampling Stage
	4.4 Optimization Stage

	5 Experimental Design
	5.1 Public Instances and Competitors
	5.2 Research Questions
	5.3 Experimental Setup

	6 Experimental Results
	6.1 RQ1: Comparison on Size of 3-wise CA
	6.2 RQ2: Comparison on Running Time
	6.3 RQ3: Effectiveness of Each Core Technique
	6.4 RQ4: Impacts of Hyper-Parameter Settings

	7 Discussions
	7.1 Evaluation on Small-scale Instances
	7.2 Study on Fault Detection Capability
	7.3 Threats to Validity

	8 Related Work
	9 Conclusion
	10 Data Availability
	Acknowledgments
	References

