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ABSTRACT
Combinatorial interaction testing (CIT) is an effective paradigm for
testing highly configurable systems, and its goal is to generate a
𝑡-wise covering array (CA) as a test suite, where 𝑡 is the strength of
testing. It is recognized that pairwise testing (i.e., CIT with 𝑡=2) is
the most common CIT technique, and has high fault detection capa-
bility in practice. The problem of pairwise CA generation (PCAG),
which is a core problem in pairwise testing, aims at generating a
pairwise CA (i.e., 2-wise CA) of minimum size, subject to hard con-
straints. The PCAG problem is a hard combinatorial optimization
problem, which urgently requires practical methods for generat-
ing pairwise CAs (PCAs) of small sizes. However, existing PCAG
algorithms suffer from the severe scalability issue; that is, when
solving large-scale PCAG instances, existing state-of-the-art PCAG
algorithms usually cost a fairly long time to generate large PCAs,
which would make the testing of highly configurable systems both
ineffective and inefficient. In this paper, we propose a novel and
effective sampling-based approach dubbed SamplingCA for solving
the PCAG problem. SamplingCA first utilizes sampling techniques
to obtain a small test suite that covers valid pairwise tuples as many
as possible, and then adds a few more test cases into the test suite
to ensure that all valid pairwise tuples are covered. Extensive exper-
iments on 125 public PCAG instances show that our approach can
generate much smaller PCAs than its state-of-the-art competitors,
indicating the effectiveness of SamplingCA. Also, our experiments
show that SamplingCA runs one to two orders of magnitude faster
than its competitors, demonstrating the efficiency of SamplingCA.
Our results confirm that SamplingCA is able to address the scala-
bility issue and considerably pushes forward the state of the art in
PCAG solving.
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1 INTRODUCTION
Highly configurable software systems have been instrumental in
satisfying increasing demands on customizing software and ser-
vices [4, 28, 40, 67]. A typical highly configurable system provides
many configuration options for users to configure the system [1, 59].
However, it is recognized that testing such a highly configurable
system can be challenging [49, 54]. Although generally, a few con-
figurations (i.e., settings of all options) would break the system, the
number of all possible configurations grows exponentially as the
number of options increases, making it impractical to test all of
them. As an example, for a configurable system with 50 configura-
tion options, where each option can take 2 possible values, the num-
ber of all possible configurations is 250 = 1, 125, 899, 906, 842, 624
(more than 1015) in the worst case.

Combinatorial interaction testing (CIT) is a popular and effective
testing paradigm to discover the faults triggered by the interactions
of 𝑡 options, where 𝑡 is the strength of testing [49, 61, 82]. It is
well acknowledged that pairwise testing (CIT with 𝑡 = 2) is the
most common CIT technique in practice, since pairwise testing is
able to build a small test suite while exhibiting high fault detection
ability in real-world applications [11, 25, 74, 83]. Actually, empirical
studies [31, 32] on extensive real-world configurable systems reveal
that most faults can be detected by pairwise testing, indicating the
effectiveness of pairwise testing in practice.

Pairwise testing constructs a reasonable number of test cases (i.e.,
configurations), where each test case is sampled from the entire

https://doi.org/10.1145/3540250.3549155
https://doi.org/10.1145/3540250.3549155
https://doi.org/10.1145/3540250.3549155


ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chuan Luo, Qiyuan Zhao, Shaowei Cai, Hongyu Zhang, and Chunming Hu

configuration space, and thus a considerable amount of testing
effort can be saved. Given a configurable system, a pairwise tuple
is a combination of values of two options, and the primary goal
of pairwise testing is to generate a pairwise covering array (PCA),
which is a set of test cases, such that all possible pairwise tuples
are covered. For real-world configurable systems, there are also
hard constraints (e.g., functional dependencies and exclusiveness)
over configuration options. Since neglecting these hard constraints
would lead to inaccurate testing results and wasting testing budget,
each test case in a generated PCA must satisfy all hard constraints.
Thus, the problem of pairwise covering array generation (PCAG),
which aims to build a PCA of minimum size while satisfying all
hard constraints, is a fundamental problem in pairwise testing.
Solving PCAG is challenging, since the PCAG problem is a hard
combinatorial optimization problem [35, 64].

There are three major classes of practical PCAG algorithms:
constraint-encoding algorithms (e.g., [3, 26, 81, 87]), greedy algo-
rithms (e.g., [7–9, 11, 33–35, 76, 78, 80]) and meta-heuristic algo-
rithms (e.g., [7, 12–14, 20, 22, 23, 27, 39, 40, 49, 58]). Constraint-
encoding algorithms first encode given PCAG instances as the in-
stances of other combinatorial optimization problems, and then call
existing optimization solvers to handle such encoded instances. Nev-
ertheless, constraint-encoding algorithms can only deal with small
PCAG instances. Greedy algorithms can handle PCAG instances of
medium scale, but the PCAs generated by them are usually of large
size. Thus, greedy algorithms are infeasible in those real-world ap-
plication scenarios where testing a single test case would cost much
computation resources. Apart from constraint-encoding algorithms
and greedy algorithms, meta-heuristic algorithms can generate
much smaller PCAs. However, existing PCAG algorithms (includ-
ing constraint-encoding ones, greedy ones and meta-heuristic ones)
suffer from the severe scalability issue [68, 79]. When solving a
large PCAG instance, they cost a fairly long time to generate a PCA
of large size. Thus, using such PCA would incur ineffective and
inefficient testing of highly configurable systems.

Different from PCAG algorithms, a considerable amount of effort
has been paid on developing sampling approaches (e.g., [4, 10, 17, 41,
54, 63, 65, 66, 69]), which can rapidly construct valid test cases for
a configurable system with many options. However, recent studies
[4, 54, 66] indicate that, even if a sampling approach generates
plenty of test cases (e.g., thousands of test cases), such huge-sized
test suite is still unable to cover all valid pairwise tuples. Hence,
testing a configurable system with such test suite would possibly
fail to detect a certain number of faults.

In this work, we are devoted to designing an effective and ef-
ficient approach to address the scalability issue and thus to push
forward the state of the art in PCAG solving. Particularly, we pro-
pose an effective and efficient sampling-based approach dubbed
SamplingCA for solving the PCAG problem. After the initializa-
tion steps, SamplingCA first works in the sampling phase, and then
works in the full covering phase. In the sampling phase, SamplingCA
uses advanced sampling techniques to construct a small test suite
𝑇 that covers valid pairwise tuples as many as possible. Thanks to
the efficiency characteristic of sampling techniques, the construc-
tion process of 𝑇 in the sampling phase is efficient. Notably, in the
sampling phase, SamplingCA conducts an iterative process: in each
iteration, SamplingCA first samples a set of multiple test cases that

are dissimilar with respect to the test cases in 𝑇 ; then from the test
case set SamplingCA selects the one 𝛽∗ such that𝑇 ∪{𝛽∗} covers the
most valid pairwise tuples, and adds 𝛽∗ into 𝑇 . In practice, through
iteratively selecting test case in a greedy manner, a small test suite
with high coverage can be generated. Further, we propose two novel
core techniques, i.e., context-aware Boolean satisfiability (SAT) al-
gorithm and variable order randomization strategy, to strengthen
the effectiveness of the sampling phase. In the full covering phase,
SamplingCA further adds a few test cases into 𝑇 to guarantee that
𝑇 achieves the full coverage, which makes𝑇 become a PCA. Hence,
through both sampling phase and full covering phase, SamplingCA
can solve the PCAG problem both efficiently and effectively.

Extensive experiments, on 125 public instances collected from
real-world configurable systems, show that SamplingCA can gen-
erate much smaller PCAs than all its state-of-the-art competitors
(including AutoCCAG [49], FastCA [38, 39] and TCA [40]), indicat-
ing the effectiveness of SamplingCA. Also, SamplingCA runs one to
two orders of magnitude faster than all its competitors, demonstrat-
ing the efficiency of SamplingCA. More encouragingly, on a huge
instance (i.e., uClinux-config) with 11,254 options and 31,637 hard
constraints, SamplingCA can generate a PCA of less than 70 test
cases, while all its competitors fail to generate PCAs. The results
indicate that SamplingCA can address the scalability issue and is
able to significantly advance the state of the art in PCAG solving.

We summarize our main contributions as below.

• We propose a novel and effective sampling-based algorithm
dubbed SamplingCA, which can address the scalability issue
and advance the state of the art in PCAG solving.
• SamplingCA incorporates a number of core techniques, in-
cluding context-aware SAT algorithm and variable order
randomization strategy, to enhance its effectiveness.
• We perform extensive experiments to evaluate SamplingCA.
The experimental results present that SamplingCA is much
more effective and efficient than its competitors, indicating
that SamplingCA might bring practical benefits.

The remainder of this paper is structured as follows. In Sec-
tion 2, we provide necessary preliminaries about pairwise test-
ing, the PCAG problem, Boolean formulae and a practical algo-
rithm for handling Boolean formulae. In Section 3, we propose the
SamplingCA approach, and present the core algorithmic techniques
of SamplingCA in detail. In Section 4, we introduce the experimental
design. In Section 5, we perform extensive experiments to evaluate
the effectiveness of SamplingCA, and report the experimental re-
sults. In Section 6, we briefly review the related work. In Section 7,
we conclude this paper.

2 PRELIMINARIES
In this section, we introduce necessary preliminaries of this work.
We first introduce pairwise testing and the PCAG problem. Then, we
describe the relationship between configurable systems and Boolean
formulae, and present a practical algorithm called DPLL [16] for
dealing with Boolean formulae, which is important in SamplingCA.

2.1 Pairwise Testing and the PCAG Problem
We describe necessary notations about pairwise testing as follows.
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System Under Test: A system under test (SUT, also known as
configurable system) can be regarded as a pair 𝑆 = (𝑂,𝐻 ), where
𝑂 is a set of options, and 𝐻 is a collection of hard constraints on the
feasible combinations of values of options in 𝑂 . For each option
𝑜𝑖 ∈ 𝑂 , we use notation 𝑅𝑖 to denote the set of all possible values
𝑜𝑖 can take.

Without loss of generality, following recent studies on testing
highly configurable systems [4, 54], this work studies the binary
scenario where each option takes binary values; that is to say, in
this work, for each option 𝑜𝑖 ∈ 𝑂 , 𝑅𝑖 is {0, 1}. In fact, it is recognized
that the general scenario, where each option takes multiple values,
can be effectively modeled as a binary scenario [4, 54]. Actually, all
benchmarking instances adopted in this work are encoded from
the general scenario and collected from real-world highly config-
urable systems. Hence, analyzing the binary scenario is of great
importance in practice.

Pairwise Tuple: Given an SUT 𝑆 = (𝑂,𝐻 ), a pairwise tuple is a
collection of two pairs, i.e., 𝜏 = {(𝑜𝑖1 , 𝑟𝑖1 ), (𝑜𝑖2 , 𝑟𝑖2 )}, indicating that
option 𝑜𝑖1 ∈ 𝑂 takes value 𝑟𝑖1 ∈ 𝑅𝑖1 , and meanwhile option 𝑜𝑖2 ∈ 𝑂
takes value 𝑟𝑖2 ∈ 𝑅𝑖2 .

Test Case: Given an SUT 𝑆 = (𝑂,𝐻 ), a test case (also known as
configuration) covers all options in 𝑂 , and thus is a set of |𝑂 | pairs,
i.e., tc = {(𝑜1, 𝑟1), (𝑜2, 𝑟2), . . . , (𝑜 |𝑂 |, 𝑟 |𝑂 |)}, implying that option
𝑜𝑖 ∈ 𝑂 takes value 𝑟𝑖 ∈ 𝑅𝑖 . In fact, a test case can be considered as
a complete assignment to the set of all options 𝑂 .

A pairwise tuple 𝜏 is covered by a test case tc if 𝜏 ⊆ tc, implying
that each option in 𝜏 takes the same value as that in tc. Also, a
pairwise tuple 𝜏 is covered by a test suite (i.e., a set of test cases) if
𝜏 is covered by at least one test case in the test suite.

Many highly configurable systems have hard constraints on
the combinations of values of options. Testing highly configurable
systems with invalid test cases (i.e., test cases violating any hard
constraint) would waste much testing budget, and might lead to
incorrect testing results. Hence, it is crucial that each generated test
case satisfies all hard constraints. Given an SUT 𝑆 = (𝑂,𝐻 ), a test
case tc is valid if tc satisfies all hard constraints in 𝐻 . A pairwise
tuple 𝜏 is valid if 𝜏 is covered by at least one valid test case.

Pairwise Covering Array: Given an SUT 𝑆 = (𝑂,𝐻 ), a pairwise
covering array (PCA) is a collection of valid test cases, denoted by
𝑇 , which ensures that each valid pairwise tuple is covered by at
least one test case in 𝑇 .

The problem of pairwise covering array generation (PCAG) is to
seek a PCA of minimum size, which is the core problem of pairwise
testing. The PCAG problem is a hard combinatorial optimization
problem [35, 64], so solving PCAG is quite challenging, which
urgently calls for effective and efficient methods.

2.2 Boolean Formulae
It is well acknowledged that an SUT is able to be modeled as a
Boolean formula [2, 5, 59, 73], and using techniques for dealing with
Boolean formulae is known to be an effective way to handle highly
configurable systems [37, 60]. Therefore, here we introduce Boolean
formulae and discuss the relationship between highly configurable
systems and Boolean formulae.

For a Boolean variable 𝑥 , a literal of variable 𝑥 is either itself (𝑥 )
or its negation (¬𝑥 ), and a clause 𝑐 is a disjunction of literals. Given

Algorithm 1: DPLL Algorithm
Input: 𝐹 : Boolean formula in CNF;

𝛼 : (partial) assignment of 𝐹 ;
Output: solution of 𝐹 , or reporting “No Solution” ;

1 if 𝛼 is a solution then return 𝛼 ;
2 if No solution can be extended from 𝛼 then return “No

Solution” ;
3 𝑥 ← the first unassigned variable in V (F) by a fixed

variable order;
4 𝐷 ← a fixed ordered list containing 1 and 0, i.e., 𝐷 = [1, 0];
5 foreach 𝑣 in 𝐷 do
6 𝛼 [𝑥] ← 𝑣 ;
7 𝐹 ′, 𝛼 ′ ← Simplify 𝐹 and extend 𝛼 through unit

propagation;
8 if DPLL(𝐹 ′, 𝛼 ′) returns a solution 𝛽 then return 𝛽 ;
9 return “No Solution”;

𝑛 Boolean variables, a Boolean formula 𝐹 in conjunctive normal
form (CNF) is a conjunction of𝑚 clauses, i.e., 𝐹 = 𝑐1 ∧𝑐2 ∧ · · · ∧𝑐𝑚 ,
where 𝑐𝑖 (1 ≤ 𝑖 ≤ 𝑚) is a clause; we use notation V (F) to denote
the set of all Boolean variables in 𝐹 , and notation C (F) to represent
the set of all clauses in 𝐹 .

For a Boolean variable 𝑥 , its truth value v(x) can be assigned
either 0 or 1, and the values of literals 𝑥 and¬𝑥 are v(x) and 1−v(x),
respectively. Given a formula 𝐹 in CNF, an assignment of 𝐹 is a
mapping 𝛼 : V (F) → {0, 1}. If an assignment 𝛼 maps all variables,
𝛼 is a complete assignment; otherwise, 𝛼 is a partial assignment.
Specifically, 𝜖 denotes an empty assignment, where all variables are
unassigned. Given an assignment 𝛼 , if variable 𝑥 is assigned under
𝛼 , then 𝛼 [𝑥] denotes 𝑥 ’s assigned value under 𝛼 . Given a formula 𝐹
in CNF and its assignment 𝛼 , a clause 𝑐 ∈ C (F) is satisfied if at least
one literal 𝑙 in 𝑐 evaluates to be 1 under 𝛼 (i.e., 𝑙 ’s value is 1 under
𝛼); otherwise 𝑐 is unsatisfied. A solution or satisfying assignment of
𝐹 is a complete assignment that makes all clauses in C (F) satisfied.
If there exists at least one satisfying assignment of 𝐹 , then 𝐹 is
satisfiable; otherwise, 𝐹 is unsatisfiable.

As mentioned before, an SUT can be modeled as a Boolean
formula, usually expressed in CNF [2, 5, 59, 73]. Given an SUT
𝑆 = (𝑂,𝐻 ) and its modeled formula 𝐹 , the option set 𝑂 of 𝑆 is
related to 𝐹 ’s variable set V (F), and the hard constraint set 𝐻 of 𝑆
corresponds to 𝐹 ’s clause setC (F). A valid test case tc of 𝑆 is actually
a solution 𝛼 of 𝐹 . Besides, a pairwise tuple of 𝑆 is a combination of
two literals of 𝐹 ; for example, a pairwise tuple 𝜏 = {(𝑜1, 0), (𝑜2, 1)}
corresponds to the combination {¬𝑥1, 𝑥2} of 𝐹 . For simplicity, in
this work a combination of two literals of 𝐹 is also called a pair-
wise tuple of 𝐹 . In addition, a pairwise tuple 𝜏 of 𝐹 is covered by a
solution 𝛼 of 𝐹 if each literal in 𝜏 evaluates to be 1 under 𝛼 .

Given an SUT and its corresponding formula 𝐹 , the PCAG prob-
lem is equivalent to finding a set of 𝐹 ’s solutions such that all valid
pairwise tuples are covered.

2.3 DPLL Algorithm
In fact, given a Boolean formula 𝐹 , the problem of finding a solution
of 𝐹 is known as the well-studied SAT problem [6]. As discussed



ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chuan Luo, Qiyuan Zhao, Shaowei Cai, Hongyu Zhang, and Chunming Hu

before, finding a solution of a formula (i.e., solving SAT) is crucial
in solving the PCAG problem. Hence, we briefly review the well-
known SAT algorithm called DPLL [16], which plays a critical role
in our SamplingCA approach.

The pseudo-code of DPLL is outlined in Algorithm 1. Given
a Boolean formula 𝐹 in CNF and a (partial) assignment 𝛼 of 𝐹 ,
DPLL(𝐹 , 𝛼) returns a solution extended from 𝛼 if it exists, and
reports “No Solution” otherwise. A solution 𝛽 is extended from a
(partial) assignment 𝛼 if 𝛼 [𝑥] = 𝛽 [𝑥] for each assigned variable
𝑥 in 𝛼 . Therefore, recalling that 𝜖 denotes an empty assignment,
DPLL(𝐹 , 𝜖) returns a solution of 𝐹 if 𝐹 is satisfiable.

According to Algorithm 1, DPLL is a search algorithm based on
recursion. Whenever 𝛼 becomes a solution of 𝐹 , the entire process
of DPLL terminates and 𝛼 is returned as output (Line 1 in Algo-
rithm 1). In each recursion, if no solution of 𝐹 can be extended from
𝛼 (e.g., a clause 𝑐 is unsatisfied while all variables appearing in 𝑐

are assigned under 𝛼), then the current recursion terminates and
DPLL moves back to the previous recursion (Line 2 in Algorithm
1). Otherwise, DPLL tries to extend the current assignment 𝛼 by
assigning a truth value to an unassigned variable, and activates the
next recursion to seek a solution of 𝐹 . In particular, the variable 𝑥
to be assigned is chosen as the first unassigned variable 𝑥 according
to a variable order1 (Line 3 in Algorithm 1). Then DPLL tries to
assign 1 and 0 to 𝑥 sequentially (Lines 4–8 in Algorithm 1). Once
𝑥 is assigned a truth value, DPLL employs a powerful reasoning
technique called unit propagation [85] to simplify the given for-
mula 𝐹 through extending redundant, unassigned variables and
eliminating unnecessary clauses,2 resulting in a simplified formula
𝐹 ′ and an extended assignment 𝛼 ′ (Line 7 in Algorithm 1). After
unit propagation, DPLL would activate the next recursion to deal
with 𝐹 ′ and 𝛼 ′ (Line 8 in Algorithm 1).

Remark: The variable order for selecting the next unassigned
variable (Line 3 in Algorithm 1) and the ordered list of truth values
to be assigned (Line 4 in Algorithm 1) decide the search direction
of DPLL, and the search is conducted through recursion (Line 8 in
Algorithm 1). These three parts aremarked in red color in Algorithm
1. In this way, all assignments extended from 𝛼 would be tried, until
the first solution extended from 𝛼 is found. For more details about
DPLL, readers can refer to the literature [16].

3 OUR PROPOSED SAMPLINGCA APPROACH
In this section, we propose and describe SamplingCA, an effective
and efficient approach for solving the PCAG problem. We first
present the top-level design of SamplingCA, and then describe the
core algorithmic techniques of SamplingCA in detail.

3.1 Top-level Design of SamplingCA
As described before, existing PCAG algorithms suffer from the scal-
ability issue and require a large amount of computation time to

1The variable order remains fixed during the entire process of DPLL, and different
implementations of DPLL adopt distinct orders. The most commonly-used order is
the one determined by a heuristic called VSIDS (Variable State Independent Decaying
Sum) [62]. For more details about VSIDS, readers can refer to literature [62, 72].
2For example, a clause 𝑐 in 𝐹 has only one literal 𝑙 , and 𝑙 ’s corresponding variable
𝑥 is still unassigned. Then 𝑥 is a redundant variable, since 𝑥 must be assigned the
value such that 𝑙 evaluate to be 1. Finally, 𝛼 is extended accordingly, and 𝑐 becomes
an unnecessary clause and would be eliminated.

Algorithm 2: Top-level Design of SamplingCA

Input: 𝐹 : Boolean formula in CNF;
Output: 𝑇 : pairwise covering array (PCA) of 𝐹 ;

1 if DPLL(𝐹, 𝜖) reports “No Solution” then return ∅;
2 𝛼 ← DPLL(𝐹, 𝜖);
3 𝑇 ← {𝛼};
4 csprob← UpdateCSProb(𝐹,𝑇 );
5 while True do
6 for 𝑗 ← 1 to 𝑘 do
7 𝛾 𝑗 ← Sample a reference assignment according to

csprob;
8 𝜋 𝑗 ← a random variable order of 𝑉 (𝐹 );
9 𝛽 𝑗 ← ContextSAT (𝐹 , 𝜖 , 𝛾 𝑗 , 𝜋 𝑗 );

10 𝛽∗ ← argmax𝛽 𝑗
gain(𝛽 𝑗 ,𝑇 ), where 1 ≤ 𝑗 ≤ 𝑘 ;

11 if gain(𝛽∗,𝑇 ) ≤ 0 then break;
12 𝑇 ← 𝑇 ∪ {𝛽∗};
13 csprob← UpdateCSProb(𝐹,𝑇 );
14 foreach possible pairwise tuple 𝜏 of 𝐹 do
15 if 𝜏 is not covered by any test case in 𝑇 then
16 if DPLL(𝐹, 𝜏) returns a solution tc then

𝑇 ← 𝑇 ∪ {tc};

17 return 𝑇 ;

generate PCAs of large sizes when handling highly configurable sys-
tems. Compared to existing PCAG algorithms, sampling approaches
can efficiently generate valid test cases for highly configurable sys-
tems. However, the test suite generated by a sampling approach
cannot achieve full coverage (i.e., covering all valid pairwise tuples)
even if such test suite contains plenty of valid test cases (e.g., thou-
sands of valid test cases) [4, 54, 66], so it is apparent that sampling
approaches cannot generate PCAs.

Inspired by the efficiency characteristic of sampling approaches
[4, 54, 66], the main ideas behind SamplingCA are as follows: 1)
SamplingCA utilizes sampling techniques to obtain a small test
suite 𝑇 that covers valid pairwise tuples as many as possible, and
then 2) SamplingCA adds a few valid test cases into 𝑇 to ensure
that all valid pairwise tuples are covered, which makes 𝑇 become
a PCA. The top-level design of SamplingCA is listed in Algorithm
2. SamplingCA takes a Boolean formula 𝐹 that is modeled from an
SUT as its input, and returns a PCA dubbed 𝑇 as its output.

As presented in Algorithm 2, SamplingCA consists of three
phases, i.e., initialization phase, sampling phase and full covering
phase. In the initialization phase, the first valid test case is gener-
ated, and necessary initialization steps are conducted (Lines 1–4 in
Algorithm 2). In the sampling phase, SamplingCA iteratively calls
a novel and effective SAT algorithm to achieve a test suite 𝑇 that
covers valid pairwise tuples as many as possible (Lines 5–13 in
Algorithm 2). In the full covering phase, SamplingCA adds a few
valid test cases into 𝑇 to ensure that 𝑇 covers all valid pairwise
tuples, which makes𝑇 become a PCA (Lines 14–16 in Algorithm 2).

Through this way, SamplingCA is guaranteed to generate a PCA
for a given SUT.
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3.2 Challenges
Before introducing the core techniques of SamplingCA, here we
present two challenges that need to be addressed by SamplingCA.

3.2.1 Diversity Challenge. In practice, minimizing the size of PCA
is of great importance, since a large PCA would lead to inefficient
testing of highly configurable systems. Actually, the size of the
test suite generated by the sampling phase directly impacts the
size of the final PCA output by SamplingCA. Thus, the sampling
phase aims to construct a test suite 𝑇 of small size while covering
valid pairwise tuple as many as possible. Also, if 𝑇 covers more
valid pairwise tuples, then there will be fewer uncovered, valid
pairwise tuples, which means that the number of new test cases
required by𝑇 to become a PCA is less. Hence, in the sampling phase,
constructing a small test suite with high coverage is desirable.

To achieve this task, an advisable solution is to construct a test
suite 𝑇 with high diversity (i.e., every test case in 𝑇 has high dis-
similarity with each other). The intuition behind this solution is
straightforward: a test suite consisting of dissimilar test cases can
cover more valid pairwise tuples than the one containing simi-
lar test cases. Therefore, failing to effectively handle the diversity
challenge could make the solving of the PCAG problem ineffective.

3.2.2 Completeness Challenge. When solving PCAG, many state-
of-the-art PCAG algorithms (e.g., AutoCCAG [49], FastCA [38, 39]
and TCA [40]) need to obtain the set of all valid pairwise tuples
before generating any test case. In particular, such PCAG solvers
first enumerate all possible pairwise tuples. Then, for each possible
pairwise tuple 𝜏 , an SAT algorithm (e.g., DPLL [16]) is called to
justify whether there is a valid test case covering 𝜏 . If this is the
case, 𝜏 is valid; otherwise, 𝜏 is invalid.

Given an SUT with 𝑛 options, the number of possible pairwise
tuples is

(𝑛
2
)
× 4. That is to say, for many advanced algorithms (e.g.,

AutoCCAG, FastCA and TCA), to obtain all valid pairwise tuples, the
number of SAT algorithm calls is

(𝑛
2
)
× 4. However, SAT is a compu-

tationally hard problem [6]; although modern SAT algorithms can
solve large SAT instances, calling an SAT algorithm to find a solu-
tion still requires a certain amount of execution time [4]. Therefore,
the process of obtaining all valid pairwise tuples used by state-of-
the-art PCAG algorithms would cost considerable computation time
when 𝑛 is large (i.e., dealing with a highly configurable system).
For example, the highly configurable system uClinux-config has
11,254 options, and thus achieving all its valid pairwise tuples re-
quires more than 250 million SAT algorithm calls, which is much
time-consuming and even infeasible in real-world applications [4].
Hence, failing to effectively deal with the completeness challenge
hinders solving PCAG from being efficient.

3.3 Initialization Phase
In the initialization phase, the primary goal of SamplingCA is to
generate the first valid test case. As aforementioned, a solution of
the given formula 𝐹 is actually a valid test case, so it is advisable
to use an SAT algorithm to obtain a solution of 𝐹 . In particular,
SamplingCA calls DPLL to achieve the first valid test case 𝛼 (Line 2
in Algorithm 2).3

3If 𝐹 is unsatisfiable, which means that there is no solution of 𝐹 , then SamplingCA
terminates and returns an empty set as its output (Line 1 in Algorithm 2). We note

After the first valid test case 𝛼 is obtained, SamplingCA initializes
the test suite 𝑇 (i.e., the set of valid test cases) as the set containing
the first valid test case, i.e., {𝛼} (Line 3 in Algorithm 2). We note
that, in the sampling phase and the full covering phase, valid test
cases would be iteratively added into 𝑇 until 𝑇 becomes a PCA.
Once 𝑇 becomes a PCA, it would be returned as the output of
SamplingCA. In addition, at the end of the initialization phase,
based on 𝑇 , SamplingCA initializes the context-aware sampling
probability for each variable in 𝐹 (which plays a key role in the
sampling phase and will be explained in Section 3.4.1),

3.4 Sampling Phase
In the sampling phase, SamplingCA conducts an iterative process
to obtain a test suite, and in each iteration, SamplingCA activates
a novel and effective SAT algorithm to generate a valid test case.
The main target of the sampling phase of SamplingCA is to achieve
a test suite that covers valid pairwise tuples as many as possible.
As discussed in Section 3.2.1, an effective solution is to construct a
test suite 𝑇 with high diversity, i.e., containing a set of dissimilar
test cases. Based on this idea, in each iteration, SamplingCA aims
to generate a valid test case 𝛽 that can enhance the diversity of𝑇 if
𝛽 is added into 𝑇 .

To enhance 𝑇 ’s diversity, in each iteration, it is intuitive to first
generate multiple valid test cases that are dissimilar with respect to
the test cases in 𝑇 , and then from those generated test cases select
the one with the highest dissimilarity. Through this way, the test
case 𝛽∗ selected in each iteration can considerably enhance the
diversity of 𝑇 if 𝛽∗ is added into 𝑇 .

Following this intuition, how to quantify the dissimilarity of a
valid test case with respect to the test cases in 𝑇 is a core problem
that needs to be addressed. Actually, in the sampling phase, an
ultimate objective is to make𝑇 cover valid pairwise tuples as many
as possible. To this end, inspired by the literature [54], we employ a
metric called gain, to quantify the contribution of a test case over𝑇 ,
and how to calculate the value of gain is described as follows. Given
a valid test case 𝛽 and a test suite 𝑇 , the gain of 𝛽 with respect to
𝑇 , denoted by gain(𝛽,𝑇 ), is the number of valid pairwise tuples
that are covered by 𝛽 but not covered by any test case in𝑇 . Clearly,
gain(𝛽,𝑇 ) can directly evaluate the improvement on the ultimate
objective, which is brought by 𝛽 over 𝑇 if 𝛽 is added into 𝑇 .

Inspired by the literature [11, 54], in each iteration, SamplingCA
adopts a greedy selection mechanism to choose the valid test case.
The greedy selection mechanism works as follows: First, a candi-
date set of 𝑘 valid test cases is constructed; Then, from the entire
candidate set the test case 𝛽∗ with the largest gain is selected. Here
𝑘 is an integer-valued hyper-parameter that plays a key role in
balancing the effectiveness and the efficiency of the sampling phase.
On one hand, setting 𝑘 to a larger value would reduce the size of
the generated test suite through examining more candidates while
more running time is required. On the other hand, setting 𝑘 to
a smaller value would make SamplingCA run faster but achieve
a larger test suite. The effect of 𝑘 will be studied empirically in
Section 5.4.

that this case would not happen in real-world applications, since a normal SUT has at
least one valid configuration. We consider this case for the correctness of SamplingCA
(i.e., ensuring that SamplingCA can handle all situations).
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Algorithm 3: UpdateCSProb Method
Input: 𝐹 : Boolean formula in CNF;

𝑇 : current, non-empty test suite;
Output: csprob: calculated context-aware sampling

probabilities;
1 foreach 𝑥𝑖 ∈ 𝑉 (𝐹 ) do
2 𝛿 ← the number of test cases in 𝑇 , where 𝑥𝑖 ’s value is 1;
3 csprob(x) ← 𝛿/|𝑇 |;
4 return csprob;

In addition, as the iterative process proceeds, more test cases
are added into 𝑇 , so more valid pairwise tuples are covered by 𝑇 .
That is to say, the gains of those test cases selected in subsequent
iterations tend to decrease. Once the gain of the selected test case
𝛽∗ becomes 0 (i.e., each pairwise tuple covered by 𝛽∗ is also covered
by at least one test case in 𝑇 ), the iterative process terminates.
Adopting such termination criterion could prevent redundant test
cases from being added into𝑇 , which prevents the size of generated
test suite from being meaninglessly increased. In practice, through
iteratively activating the greedy selection mechanism, a small test
suite with high coverage can be constructed. The sampling phase
is outlined in Lines 5–13 in Algorithm 2.

3.4.1 Context-aware SAT Algorithm. For the sampling phase, in
each iteration, a core task is to generate a candidate set of 𝑘 valid
test cases that are dissimilar compared to the test cases in𝑇 . As dis-
cussed in Section 2.3, to generate a valid test case, a straightforward
method is to directly useDPLL. However, as an SAT algorithm,DPLL
concentrates on searching for a solution efficiently, but it does not
take the dissimilarity requirement into consideration. This is a se-
vere problem, since neglecting the dissimilarity requirement would
negatively impact the diversity of 𝑇 and thus prevent the number
of valid pairwise tuples covered by 𝑇 from being maximized.

To tackle this problem, we propose a novel and effective context-
aware SAT algorithm dubbed ContextSAT for constructing valid
test cases that are dissimilar compared to the test cases in 𝑇 . Be-
fore describing the technical details of the ContextSAT algorithm,
inspired by the literature [54], we utilize the concept of context-
aware sampling probability, which is described as follows. Given a
Boolean formula 𝐹 , for each variable 𝑥 ∈ 𝑉 (𝐹 ), the context-aware
sampling probability of 𝑥 , denoted by csprob[x], is the probability
that 𝑥 ’s value is sampled to be 0. Thus, the probability that 𝑥 ’s
value is sampled to be 1 is 1− csprob[x]. Recent studies present that
such sampling approaches where sampling probabilities change
dynamically can enhance the diversity of the generated test suite
compared to uniform sampling (i.e., for each variable 𝑥 , csprob[x]
remains 0.5 during the entire sampling process) [4, 54].

As a result, in SamplingCA, each variable’s context-aware sam-
pling probability is computed based on the current context of 𝑇 ,
and would be updated once a new test case is added into 𝑇 (Line
13 in Algorithm 2). In particular, given the current test suite 𝑇 , to
generate a test case that is dissimilar with respect to the test cases
in 𝑇 , it is intuitive that, for each variable 𝑥 , if the number of test
cases in 𝑇 where 𝑥 ’s value is 1, is larger than the number of test
cases in 𝑇 where 𝑥 ’s value is 0, then csprob[x] should be larger;

Algorithm 4: ContextSAT Algorithm
Input: 𝐹 : Boolean formula in CNF;

𝛼 : (partial) assignment of 𝐹 ;
𝛾 : a reference assignment of 𝑉 (𝐹 );
𝜋 : a variable order of 𝑉 (𝐹 );

Output: solution of 𝐹 , or reporting “No Solution” ;
1 if 𝛼 is a solution then return 𝛼 ;
2 if No solution can be extended from 𝛼 then return “No

Solution” ;
3 𝑥 ← the first unassigned variable in V (F) according to 𝜋 ;
4 𝐷 ← an ordered list based on 𝛾 , i.e., 𝐷 = [𝛾 [𝑥], 1 − 𝛾 [𝑥]];
5 foreach 𝑣 in 𝐷 do
6 𝛼 [𝑥] ← 𝑣 ;
7 𝐹 ′, 𝛼 ′ ← Simplify 𝐹 and extend 𝛼 through unit

propagation;
8 if ContextSAT(𝐹 ′, 𝛼 ′, 𝛾, 𝜋) returns a solution 𝛽 then

return 𝛽 ;
9 return “No Solution”;

otherwise, csprob[x] should be smaller. Based on this intuition, in
SamplingCA, for a variable 𝑥 , csprob[x] is calculated as the ratio
between the number of test cases in 𝑇 where 𝑥 ’s value is 1, and
the number of all test cases in 𝑇 (i.e., the size of 𝑇 ). The method of
calculating csprob is outlined in Algorithm 3.

Actually, when generating a valid candidate test case, it is ad-
visable to take csprob into consideration, since csprob reflects the
current context of 𝑇 . As aforementioned, DPLL can generate valid
test cases efficiently, but does not consider the dissimilarity re-
quirement. Thus, incorporating csprob into DPLL can make DPLL
generate such valid test cases that are dissimilar compared to the
test cases in𝑇 . Particularly, in each iteration of the sampling phase,
when generating the 𝑗-th valid candidate test case, a reference
assignment 𝛾 𝑗 (possibly invalid) is sampled according to csprob,
where, for each variable 𝑥 , 𝛾 𝑗 [𝑥] is sampled based on csprob[𝑥]
(Line 7 in Algorithm 2). In this way, 𝛾 𝑗 has a high dissimilarity
with respect to the test cases in 𝑇 . Then we design a new SAT
algorithm dubbed ContextSAT , which is based on DPLL and utilizes
the reference assignment 𝛾 𝑗 to guide the search direction.

The pseudo-code of our ContextSAT algorithm is listed in Al-
gorithm 4, where the major differences between ContextSAT and
DPLL are marked in blue color. As discussed in Section 2.3, the
variable order for selecting the next unassigned variable, as well
as the ordered list of truth values to be assigned, determines the
direction of solution search, and the search is conducted based on
recursion. Thus, ContextSAT introduces two enhancements over
DPLL on determining both the variable order and the truth value
order. The first enhancement will be introduced in Section 3.4.2,
and here we introduce the second enhancement. Compared to DPLL
that always uses a fixed ordered list of truth values, ContextSAT
determines the ordered list according to the reference assignment
𝛾 𝑗 , where the first truth value is the one under 𝛾 𝑗 (Line 4 in Algo-
rithm 4). Consequently, based on recursion, ContextSAT aims to
search for a valid test case 𝛽 𝑗 , which, as a candidate test case, is
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similar with 𝛾 𝑗 and thus has high dissimilarity with respect to the
test cases in 𝑇 (Line 8 in Algorithm 4).

Through this way, ContextSAT can construct a set of candidate
test cases, where each candidate can enhance the diversity of𝑇 if it
is added into 𝑇 .

3.4.2 Variable Order Randomization Strategy. Here we introduce
the enhancement of ContextSAT over DPLL on determining the
variable order. Actually, if ContextSAT utilizes the same variable
order as DPLL does (e.g., the variable order decided by the VSIDS
heuristic [62], as described in Section 2.3), then the variable orders
adopted by ContextSAT are exactly the same when generating mul-
tiple valid test cases for the same Boolean formula. That is to say,
for each test case in the generated test suite𝑇 , it is generated using
the same variable order. However, as discussed in Section 2.3, the
variable order greatly impacts the search direction, so using the
same variable order to generate multiple test cases for 𝑇 would
negatively impact the diversity of 𝑇 .

In the research field of SAT solving, it is recognized that adopt-
ing randomized strategies can enhance diversity [19, 36, 44, 47].
Hence, it is intuitive that integrating ContextSAT with randomized
strategies can further enhance the diversity of the generated test
suite 𝑇 . To this end, we propose a variable order randomization
strategy to determine the variable order in ContextSAT . Particularly,
when generating a valid test case, SamplingCA would first obtain
a random variable order of V (F), and then activate ContextSAT
with the random variable order (Lines 8–9 in Algorithm 2); for
ContextSAT , it uses the random variable order to select the next
unassigned variable (Line 3 in Algorithm 4).

Through the variable order randomization strategy, ContextSAT
adopts different variable orders for generating various valid test
cases, so the diversity of 𝑇 can be enhanced.

Remark: In the sampling phase, through the context-aware
SAT algorithm (Section 3.4.1) and the variable order randomization
strategy (Section 3.4.2), SamplingCA can generate a small test suite
𝑇 with high diversity, which can tackle the diversity challenge
(Section 3.2.1).

3.5 Full Covering Phase
Once the sampling phase terminates, a test suite 𝑇 is generated.
However, 𝑇 is not guaranteed to cover all valid pairwise tuples.
In the full covering phase, SamplingCA aims to add a few valid
test cases into 𝑇 , in order to make 𝑇 cover all valid pairwise tuples
and thus become a PCA. Particularly, in the full covering phase,
SamplingCA conducts an enumerating process to traverse all possi-
ble pairwise tuples. For each possible pairwise tuple 𝜏 , SamplingCA
first checks whether 𝜏 is both valid and uncovered; if this is the
case, SamplingCA adds a valid test case tc that covers 𝜏 into𝑇 . After
all valid pairwise tuples are covered by 𝑇 , 𝑇 becomes a PCA and is
returned by SamplingCA as the output.

For the enumerating process, there is an important problem,
i.e., how to efficiently check whether a pairwise tuple 𝜏 is valid
and uncovered. A straightforward method is to 1) first call DPLL(𝐹 ,
𝜏) to justify 𝜏 ’s validity, and 2) then check the covering status
of 𝜏 . However, given an SUT with 𝑛 options, there are

(𝑛
2
)
× 4

possible pairwise tuples, so using the straightforward method needs

to call the SAT algorithm
(𝑛
2
)
× 4 times. To address this problem,

we propose an efficient validation method based on the definition
of valid pairwise tuple.

As described in Section 2.1, the definition of valid pairwise tuple
is as follows: for a pairwise tuple 𝜏 , if there exists at least one valid
test case covering 𝜏 , then 𝜏 is a valid pairwise tuple. According
to the definition of valid pairwise tuple, since all test cases in 𝑇

are valid, pairwise tuples that are covered by any test case in 𝑇

are valid. Hence, we can construct a set of valid pairwise tuples
that are covered by at least one test case in 𝑇 , denoted by𝑀 . Then,
when checking whether a given pairwise tuple 𝜏 is both valid and
uncovered, SamplingCA first justifies whether 𝜏 belongs to 𝑀 : if
so, 𝜏 does not satisfy this condition and SamplingCA continues to
check the next pairwise tuple; otherwise, SamplingCA calls DPLL(𝐹 ,
𝜏) to justify 𝜏 ’s validity. Hence, compared to the straightforward
method, the number of SAT algorithm calls required by SamplingCA
is significantly reduced, which makes considerable contribution to
its efficiency.

Remark: As discussed in Section 3.2.2, many state-of-the-art
PCAG algorithms (e.g., AutoCCAG, FastCA and TCA) need to obtain
the set of all valid pairwise tuples before generating any test case,
and they call an SAT algorithm one time to validate one single
pairwise tuple. Thus, when dealing with an SUT with many options,
such existing PCAG algorithms have to activate a large number of
SAT algorithm calls, which costs much running time.

Instead, given an SUT with 𝑛 options, SamplingCA does not re-
quire obtaining all valid pairwise tuples in advance. In the sampling
phase, rather than calling an SAT algorithm to validate one single
pairwise tuple, SamplingCA calls an SAT algorithm to find a valid
test case, which covers

(𝑛
2
)
valid pairwise tuples. That is to say,

through calling SAT algorithm one time, SamplingCA can validate a
considerable number of pairwise tuples. Hence, compared to many
state-of-the-art PCAG algorithms, the number of SAT algorithm
calls is obviously reduced, so the efficiency can be significantly
improved. Also, in the full covering phase, all valid pairwise tuples
are ensured to be covered, which guarantees that SamplingCA can
generate a PCA. Therefore, SamplingCA can generate PCAs for
large PCAG instances, indicating that the completeness challenge
can be addressed (Section 3.2.2).

4 EXPERIMENTAL DESIGN
In this section, we present our design of the experiments in this
work. We first describe the benchmarking instances used in our
experiments. Then we introduce the state-of-the-art competitors
of SamplingCA. Subsequently, we list the research questions, and
finally we introduce the experiment setup.

4.1 Benchmarking Instances
In our experiments, we adopt an instance set of 125 PCAG bench-
marking instances, all of which are encoded from real-world, highly
configurable systems and modeled as Boolean formulae in CNF.
These PCAG instances are originally collected by Baranov et al.
[4], and have been extensively studied in recent works [4, 29, 37,
54, 66, 68, 69]. For all instances adopted in this work, the numbers
of options of modeled formulae vary from 94 to 11,254, and the
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numbers of constraints of modeled formulae range from 190 to
62,183. All instances are publicly available online.4

4.2 State-of-the-art Competitors
In this work, SamplingCA is compared against three state-of-the-art
competitors, i.e., AutoCCAG [49], FastCA [38, 39] and TCA [40].

AutoCCAG [49] is a recent, state-of-the-art algorithm that uses
advanced automated optimization techniques. The experimental
results in the literature [49] demonstrates that AutoCCAG achieves
significant performance improvement over TCA, CASA [20, 21] and
CHiP [61] on a broad range of practical instances, indicating the
effectiveness and the robustness of AutoCCAG.

FastCA [38, 39] is an both efficient and effective meta-heuristic
algorithm. Reported in the literature [39], FastCA performs consid-
erably better and runs much faster than TCA, CASA, ACTS [84] and
HHSA [27] on a diverse set of real-world instances.

TCA [40] is a high-performance two-mode meta-heuristic algo-
rithm. According to the experiments in the literature [40], TCA can
generate much smaller PCAs than CASA, ACTS and Cascade [87]
on many application instances.

For AutoCCAG, the source code is kindly provided by its authors
[49]. For the other two competitors, the source codes of FastCA5

and TCA6 are publicly available. For all these 3 competitors (i.e.,
AutoCCAG, FastCA and TCA), they are evaluated using the hyper-
parameter settings recommended in the literature [39, 40, 49], re-
spectively. Besides AutoCCAG, FastCA and TCA, we also evaluate
the practical performance of other three well-known algorithms,
including CASA [20, 21], HHSA [27] and ACTS [84]. However, our
experiments present that CASA, HHSA and ACTS cannot generate
PCAs for the majority of the benchmarking instances within the
cutoff time that is used in this work and will be described in Section
4.4. Thus, to save space, we do not report the results of CASA, HHSA
and ACTS in this paper. The results of comparing SamplingCA with
CASA, HHSA and ACTS are publicly available online.4

4.3 Research Questions
In practice, it is desirable to generate a PCA of small size in a
short time for testing a highly configurable system. Hence, for
solving PCAG, the size of PCA and the running time are two critical
metrics. In our experiments we concentrate on pushing forward
the current state of the art in minimizing the size of generated PCA
and shortening the running time. Our evaluation of SamplingCA
aims at answering the following research questions (RQs):

RQ1: Can SamplingCA generate smaller PCA compared to
its state-of-the-art competitors?

In this RQ, we conduct experiments to compare the size of PCA
generated by SamplingCA against those of PCAs generated by its 3
state-of-the-art competitors, i.e., AutoCCAG, FastCA and TCA.

RQ2: Can SamplingCA generate PCAs more efficiently
than its state-of-the-art competitors?

In this RQ, we evaluate the running time of SamplingCA for
generating PCAs, and compare the running time of SamplingCA
with that of AutoCCAG, FastCA and TCA.

4https://github.com/chuanluocs/SamplingCA
5https://github.com/jkunlin/fastca
6https://github.com/jkunlin/TCA

RQ3: Does each core technique of SamplingCA contribute
to the performance improvement?

In this RQ, we conduct ablation study to analyze the contribution
of the core techniques of SamplingCA, including context-aware
SAT algorithm and variable order randomization strategy, to the
performance improvement. Besides, since the sampling phase of
SamplingCA is of great importance, we also study the effectiveness
of the sampling phase.

RQ4: What impact does the hyper-parameter setting have
on the performance of SamplingCA?

In this RQ, we study how the setting of hyper-parameter 𝑘 (in-
troduced in Section 3.4) impacts the performance of SamplingCA.

4.4 Experimental Setup
All experiments in this work were performed on a computing ma-
chine with Intel Xeon Platinum 8272CL CPU and 256GB memory,
running Ubuntu 18.04. We note that SamplingCA is implemented on
the basis of LS-Sampling [54]. Since LS-Sampling adopts Coprocessor
[57] to simplify input Boolean formulae before constructing test
suites, SamplingCA also employs Coprocessor [57] to simplify input
Boolean formulae before generating PCAs. The implementation of
SamplingCA is publicly available online.4

SamplingCA and its three state-of-the-art competitors are all
randomized approaches, so we performed 100 independent runs
per benchmarking instance for each competing approach, with
a cutoff time of 3600 CPU seconds per run, following a recent
study on solving a hard combinatorial optimization problem [48].
In our experiments, for SamplingCA, the hyper-parameter 𝑘 is set
to 100, and the effects of different settings of hyper-parameter 𝑘
are discussed in Section 5.4. Also, since the influential SAT solver
MiniSAT [18] provides an efficient implementation of DPLL, we
use MiniSAT as the implementation of DPLL in this work, and our
ContextSAT algorithm is also implemented on top of MiniSAT .

For each competing approach on each benchmarking instance,
we demonstrate the smallest size of the generated PCAs among 100
runs, denoted by ‘min’, and the average size of the generated PCAs
over 100 runs, denoted by ‘avg’. Also, for each approach on each
instance, we also report the average running time over 100 runs,
denoted by ‘time’. In this work, all running times are measured
in CPU second. If a competing approach failed to generate a PCA
among all 100 runs for a benchmarking instance, we mark the
corresponding results of ‘min’, ‘avg’ and ‘time’ as ‘–’. Besides, for
each competing approach (in Tables 2, 3 and 4), we also present
the average size and the average time over the entire instance
set except two instances (i.e., embtoolkit and uClinux-config),
because all competitors (including AutoCCAG, FastCA and TCA)
and a number of SamplingCA’s alternative versions are not able to
generate PCAs for these two instances among all 100 runs. In our
experiments, for each instance (in Table 1) or the entire instance set
except embtoolkit and uClinux-config (in Tables 2, 3 and 4), we
utilize boldface to indicate the best results. In addition, for each
instance (in Table 1), we also report the number of options of the
modeled formula and the number of constraints of the modeled
formula, denoted by ‘#Options’ and ‘#Constraints’, respectively.

Following the recent study [49], in our experiments, for each
instance (in Table 1) or the entire instance set except embtoolkit

https://github.com/chuanluocs/SamplingCA
https://github.com/jkunlin/fastca
https://github.com/jkunlin/TCA
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Table 1: Comparing SamplingCA against AutoCCAG, FastCA and TCA on 20 selected instances.

Instances #Options #Constraints SamplingCA AutoCCAG FastCA TCA

min (avg) time min (avg) size time min (avg) time min (avg) time

adderII 1276 3206 101 (109.16) 33.37 166 (183.67) 1605.72 164 (183.82) 1266.56 203 (219.82) 948.99
at91sam7sek 1296 3921 98 (104.10) 32.96 154 (170.23) 1484.51 156 (170.25) 1482.87 187 (204.13) 958.29
busybox_1_28_0 998 962 54 (58.12) 11.57 95 (111.18) 611.19 95 (111.37) 567.30 125 (137.77) 512.78
dreamcast 1252 3168 108 (113.52) 33.41 172 (188.47) 1589.67 172 (188.75) 1195.18 199 (226.71) 918.31
e7t 1266 3816 103 (110.17) 32.87 163 (177.60) 1732.23 163 (177.60) 1543.14 200 (218.47) 937.28
ecos-icse11 1244 3146 103 (108.22) 31.04 260 (286.70) 1662.22 260 (287.23) 1962.32 328 (366.92) 927.75
embtoolkit 2128 15483 1107 (1119.48) 891.94 – (–) – – (–) – – (–) –
financial 771 7241 4421 (4433.91) 544.31 5292 (5351.01) 2951.96 5292 (5351.04) 2904.89 5293 (5352.04) 2743.31
freebsd-icse11 1396 62183 116 (121.33) 43.94 164 (184.02) 3478.97 173 (188.62) 3552.38 211 (232.44) 2821.50
h8max 1202 3072 102 (108.07) 29.84 163 (182.41) 1496.94 164 (182.80) 1178.40 192 (219.10) 801.22
innovator 1256 50452 134 (140.95) 41.17 204 (225.73) 2454.67 206 (225.92) 2988.04 255 (270.43) 1556.81
integrator_arm9 1267 3939 116 (122.19) 36.94 197 (213.56) 2445.35 196 (213.70) 3143.44 233 (256.05) 1682.01
mpc50 1213 3728 96 (100.97) 28.20 141 (160.01) 1260.33 145 (160.15) 1220.16 177 (193.85) 819.19
ocelot 1266 3141 103 (107.63) 32.19 163 (181.75) 1618.54 165 (181.87) 1274.91 198 (221.31) 926.08
pc_i82544 1259 3179 106 (111.18) 33.15 169 (188.16) 1561.15 168 (188.65) 1189.46 204 (225.70) 940.95
ref4955 1218 3099 95 (102.02) 28.91 154 (168.99) 1548.75 155 (169.17) 1211.88 185 (202.64) 827.63
refidt334 1263 3140 108 (114.60) 34.47 173 (192.91) 1540.53 173 (193.23) 1324.82 217 (234.44) 985.29
se7751 1295 3254 113 (118.08) 36.94 182 (198.69) 1704.43 181 (198.72) 1396.61 213 (238.97) 1028.23
uClinux-config 11254 31637 63 (66.45) 1498.42 – (–) – – (–) – – (–) –
XSEngine 1260 3803 102 (107.95) 32.50 159 (177.14) 1537.39 161 (177.30) 1389.57 191 (214.61) 926.49

Table 2: Average size and average time of SamplingCA,
AutoCCAG, FastCA and TCA over the entire instance set
except two instances (i.e., embtoolkit and uClinux-config).

SamplingCA AutoCCAG FastCA TCA

average size 140.16 215.64 215.90 251.03
average time 34.93 1520.45 1405.08 944.39

and uClinux-config (in Tables 2 and 3), we separately compare
the sizes of all PCAs generated by SamplingCA with those of all
PCAs generated by each competitor. In particular, for any compar-
ison between SamplingCA and each competitor, we perform the
Wilcoxon signed-rank test [15] to examine the statistical signifi-
cance, and calculate the Vargha-Delaney effect size [77]. For each
instance (in Table 1) or the entire instance set except embtoolkit
and uClinux-config (in Tables 2 and 3), if 1) all the p-values of
Wilcoxon signed-rank tests at 95% confidence level are smaller than
0.05 (indicating statistical significance) [15, 49], and 2) the Vargha-
Delaney effect sizes of all comparisons are larger than 0.71 (indicat-
ing large effect sizes) [49, 71, 77], the performance improvement
of SamplingCA over all its competitors is considered to be statis-
tically significant and meaningful, and the results of SamplingCA
are marked using underline.

5 EXPERIMENTAL RESULTS
In this section, we report and discuss the experimental results, in
order to demonstrate that SamplingCA is both effective and efficient.

5.1 Comparison on the Size of PCA (RQ1)
Table 1 presents the comparative results of SamplingCA and its
three state-of-the-art competitors (i.e., AutoCCAG, FastCA and TCA)

on 20 selected instances, where 10 instances are recognized as
representative ones in the literature [4], and other 10 instances
are randomly chosen. Due to the space limit, we do not report the
results on all instances in Table 1. Nevertheless, the full results of
SamplingCA and all its competitors on all instances are publicly
available online.4 Also, Table 2 summarizes the average size and the
average running time of SamplingCA and all its competitors over
the entire instance set except embtoolkit and uClinux-config.

According to Tables 1 and 2, SamplingCA stands out as the best
approach, and it can generate much smaller PCAs than all its com-
petitors. More encouragingly, on the uClinux-config instance
with 11,254 options and 31,637 constraints, SamplingCA can gen-
erate a PCA consisting of less than 70 test cases, while all its com-
petitors fail to generate PCAs. The experimental results in Tables 1
and 2 clearly indicate that SamplingCA advances the state of the
art in minimizing the size of PCA.

5.2 Comparison on Efficiency (RQ2)
The running time required by SamplingCA and all its competitors on
each selected instance is presented in Table 1. Also, the average time
required by these competing approaches over the entire instance set
except embtoolkit and uClinux-config is summarized in Table
2. From Tables 1 and 2, SamplingCA runs much faster than all
its competitors. Particularly, Table 2 shows that the average time
required by SamplingCA is one to two orders of magnitude less
than all its competitors, indicating the efficiency of SamplingCA.

As discussed in Section 3.2.2, when solving an instance, the num-
ber of SAT algorithm calls required by each of AutoCCAG, FastCA
and TCA is equal to the number of possible pairwise tuples, while
SamplingCA can reduce the number of SAT algorithm calls. We
illustrate the number of SamplingCA’s SAT algorithm calls and the
number of possible pairwise tuples on each instance in Figure 1,
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Figure 1: Number of SamplingCA’s SAT algorithm calls (in
Y-axis) and number of possible pairwise tuples (in X-axis)
for all benchmarking instances. A notation ‘+’ in red color
represents an instance.

where a notation ‘+’ in red color represents an instance. For the
majority of instances, the number of SamplingCA’s SAT algorithm
calls is significantly less than the number of possible pairwise tu-
ples. As an example, for the uClinux-config instance, SamplingCA
needs to call SAT algorithm 1,764,977 times, while the number of its
possible pairwise tuples is 253,282,524; this might be the possible
reason why SamplingCA can generate a PCA for uClinux-config
while all its competitors fail to handle uClinux-config. Hence,
through considerably reducing the number of SAT algorithm calls,
SamplingCA is much more efficient than all its competitors.

5.3 Effects of Core Techniques (RQ3)
In this subsection, we conduct ablation study to analyze the ef-
fects of core techniques of SamplingCA. The sampling phase of
SamplingCA is important, so we modify SamplingCA by replacing
its sampling phase with a recent, state-of-the-art local search based
sampling method named LS-Sampling [54], resulting in an alter-
native version of SamplingCA called Alt-1. Besides, both context-
aware SAT algorithm and variable order randomization strategy
are core techniques of SamplingCA, so we remove each of them
from SamplingCA, resulting in two alternative versions namedAlt-2
and Alt-3, respectively. The average size and the average time of
SamplingCA and all its alternative versions are reported in Table
3. In terms of both metrics (i.e., average size and average time),
SamplingCA significantly outperforms all its alternative versions,
indicating the effectiveness of each core technique of SamplingCA.

5.4 Impact of Hyper-parameter Setting (RQ4)
In Table 4, we present the average size and the average time of
SamplingCA with different settings of 𝑘 , recalling that 𝑘 represents
the number of valid candidate test cases sampled in each iteration
of the sampling phase, as described in Section 3.4. According to
Table 4, when 𝑘 is set to a larger value, SamplingCA can generate a

Table 3: Average size and average time of SamplingCA and its
alternative versions over the entire instance set except two
instances (i.e., embtoolkit and uClinux-config).

SamplingCA Alt-1 Alt-2 Alt-3

average size 140.16 556.48 188.11 922.95
average time 34.93 144.71 48.23 77.54

Table 4: Average size and average time of SamplingCA with
different settings of 𝒌 over the entire instance set except two
instances (i.e., embtoolkit and uClinux-config).

𝑘=10 𝑘=50 𝑘=100 𝑘=500 𝑘=1000

average size 196.35 150.12 140.16 126.34 122.49
average time 5.25 18.93 34.93 162.83 314.77

PCA of smaller size, but costs more running time. This empirical
analysis indicates that SamplingCA is a flexible PCAG algorithm,
and can strike a good balance between effectiveness and efficiency
by controlling 𝑘 . As described in Section 4.4, the default setting of
𝑘 in SamplingCA is 100. From Table 4, SamplingCA can achieve a
good trade-off between effectiveness and efficiency using 𝑘=100.

5.5 Threats to Validity
There are two potential threats to validity of our evaluations:

Random Characteristics of Competing Approaches: Actu-
ally, all competing approaches evaluated in our experiments (in-
cluding SamplingCA, AutoCCAG, FastCA and TCA) are all random-
ized PCAG algorithms. Hence, for each approach on each instance,
performing a small number of runs cannot thoroughly justify the
performance of the respective approach. To reduce this potential
threat, as introduced in Section 4.4, in our experiments, we conduct
100 independent runs per instance for each approach. Also, when
comparing SamplingCA to its competitors, we conduct significance
tests and calculate effect sizes to analyze the comparative results.
Hence, our experimental setup can alleviate this threat to validity.

Generality of Benchmarking Instances: To mitigate this po-
tential threat of validity, following a recent work [4], we adopt a
diverse set of 125 benchmarking instances. As described in Sec-
tion 4.1, these instances have been well studied in many research
works [4, 29, 37, 54, 66, 68, 69]. In addition, these instances cover
wide-ranging numbers of options and constraints. Hence, these
instances are representative and general, so this potential threat
can be reduced.

6 RELATEDWORK
Combinatorial interaction testing (CIT) has been extensively ex-
plored in the last two decades, and is one of the most important
research directions in software testing. For detailed literature sur-
vey, readers can refer to the books written by Kuhn et al. [30] and
Zhang et al. [86], as well as review articles [64, 75]. It is well ac-
knowledged that pairwise testing (CIT with 𝑡 = 2) is the most
common CIT technique in practice and is able to exhibit high fault
detection ability in real-world applications [11, 25, 31, 74, 83].
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Practical algorithms for solving the PCAG problem can be mainly
divided into three classes: constraint-encoding algorithms (e.g.,
[3, 26, 81, 87]), greedy algorithms (e.g., [7–9, 11, 33–35, 76, 78, 80])
and meta-heuristic algorithms (e.g., [7, 12–14, 20, 22, 23, 27, 39, 40,
49, 58]). For constraint-encoding algorithms, they first transform
given PCAG instances to the instances of other combinatorial opti-
mization problems, and then employ existing optimization solvers
to solve such transformed instances. Hnich et al. [26], Banbara et al.
[3], Zhang et al. [87] and Yamada et al. [81] encode the PCAG prob-
lem into the problem of constraint programming, and use powerful
constraint programming solvers to deal with the encoded problem.
However, such constraint-encoding algorithms can only deal with
the PCAG instances with small scale.

For greedy algorithms, there are two popular types, i.e., one-test-
at-a-time (OTAT) methods and in-parameter-order (IPO) methods.
The first OTATmethod is the influentialAETG algorithm [11]. Since
then, a number of improvements have been proposed to enhance
the practical performance of AETG [7, 8, 76, 80]. The IPO technique
was proposed by Lei and Tai [35], and then Lei et al. introduced a
general IPOG framework that incorporates the IPO technique [33].
Also, there are many variants of IPOG in the literature (e.g., [34, 78]).
Although greedy algorithms can deal with PCAG instances with
medium scale, their constructed PCAs are usually of large size, and
are impractical in real-world application scenarios where testing a
single test case is much time-consuming.

Compared to both constraint-encoding algorithms and greedy
algorithms, meta-heuristic algorithms can generate PCAs of much
smaller size. Particularly, meta-heuristic algorithms work as fol-
lows: they try to search for a PCA of a particular size 𝛿 ; once a
𝛿-sized PCA is found, then meta-heuristic algorithms continue to
find a PCA of size smaller than 𝛿 . Garvin et al. designed a well-
known meta-heuristic algorithm called CASA [20, 21], which is
based on advanced simulated annealing techniques. Later, Jia et al.
improved simulated annealing through hyper-heuristic search and
dynamically adapting search strategies, resulting in an enhanced
algorithm called HHSA [27]. Lin et al. presented two state-of-the-
art meta-heuristic algorithms named TCA [40] and FastCA [38, 39],
which adopt powerful forbidden strategies to improve their prac-
tical performance. Recently, Luo et al. proposed a state-of-the-art
algorithm dubbed AutoCCAG [49], which employs effective auto-
mated algorithm optimization techniques to improve its robustness.
However, it is recognized that existing PCAG algorithms (including
constraint-encoding ones, greedy ones and meta-heuristic ones)
suffer from the serious scalability issue [68, 79]. That is, for solv-
ing large PCAG instances, existing PCAG algorithms usually take
much time to generate large PCAs. Moreover, existing PCAG algo-
rithms even fail to generate PCAs when handling huge instances.
For example, as shown in Table 1, three state-of-the-art algorithms,
including AutoCCAG, FastCA and TCA, fail to generate PCAs for
two huge instances (i.e., embtoolkit and uClinux-config).

For testing an SUT with many options, compared to building
PCAs, there are a number of sampling methods that generate a test
suite (i.e., a set of test cases) to cover valid pairwise tuples as many
as possible (e.g., [4, 10, 17, 41, 54, 63, 65, 66, 69]). Oh et al. studied
uniform sampling, which samples each valid test case with equal
probability [66]. Baranov et al. presented an adaptive weighted
sampling method [4], which covers more valid pairwise tuples than

uniform sampling. Luo et al. proposed an effective sampling method
called LS-Sampling [54]. LS-Sampling is based on the paradigm of
local search, which shows effectiveness in solving many hard com-
binatorial optimization problems, including Boolean satisfiability
[43, 45–47, 52, 53], maximum satisfiability [42, 44], minimum ver-
tex cover [48], set covering [55], resource provisioning [50, 51],
incident identification [24] and container reallocation [70]. Also,
LS-Sampling exhibits the state-of-the-art performance, and greatly
outperforms previous sampling methods. However, there is a se-
rious problem for sampling methods: the test suites generated by
existing sampling methods cannot achieve full pairwise coverage
(i.e., they cannot cover all valid pairwise tuples). According to recent
empirical studies [4, 54, 66], even if a sampling method generates
a test suite of large size (e.g., containing thousands of test cases),
such large-sized test suite still cannot achieve full pairwise cover-
age. Hence, using such test suites for testing would probably fail
to discover a certain number of faults, incurring ineffective and
inefficient testing of highly configurable systems.

In this work, we propose SamplingCA, which is a novel and ef-
fective sampling-based algorithm for generating PCAs. Compared
to existing PCAG algorithms that suffer from the scalability issue,
when solving large PCAG instances, SamplingCA can generate small
PCAs efficiently. In particular, SamplingCA can build PCAs for those
two huge instances (i.e., embtoolkit and uClinux-config), indi-
cating that SamplingCA can address the scalability issue. Compared
to existing sampling approaches that cannot achieve full coverage,
SamplingCA is able to generate PCAs, so all valid pairwise tuples
are guaranteed to be covered. As a result, SamplingCA could bring
practical benefits when testing highly configurable systems.

7 CONCLUSION
In this work, we propose a novel and efficient sampling-based
approach dubbed SamplingCA for solving the PCAG problem. Ex-
tensive experiments on a diverse set of 125 public instances, all
of which are encoded from real-world, highly configurable sys-
tems, demonstrate that SamplingCA can generate much smaller
PCAs than all its state-of-the-art competitors (including AutoCCAG,
FastCA and TCA), which indicates the effectiveness of SamplingCA.
Also, our experimental results present that SamplingCA runs one
to two magnitude faster than all its competitors, demonstrating the
efficiency of SamplingCA. Furthermore, our empirical evaluations
confirm the effectiveness of all core techniques of SamplingCA.

DATA AVAILABILITY STATEMENT
The implementation of SamplingCA, all benchmarking instances
adopted in this work and detailed comparative results (including the
experimental results of SamplingCA, all its competitors and all its
alternatives on all benchmarking instances) are publicly available
at https://github.com/chuanluocs/SamplingCA and archived
at Zenodo [56].
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