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Combinatorial Interaction Testing (cont’d)

Table: System under Testing (SUT)

Operating System Browser Payment Method

Windows Internet Explorer Alipay

Linux Chrome Paypal

Mac OS Microsoft Edge
Safari Visa

 Combinatorial interaction testing: detecting faults triggered by
combinations of ¢ option-value pairs (or, 7-wise tuples)

 Pairwise testing: 7 fixed to 2
o 2-wise tuple: referred to as pairwise tuple

e E.g., T ={Operating System=Android, Payment Method=Wechat}
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Combinatorial Interaction Testing (cont’d)

* Test case: complete assignment of options

e E.g., fc = {Operating System=Android, Browser=Chrome, Payment
Method=Wechat}

. . def
* Pairwise tuple 7 is covered by testcasefc = 7 C fc

 E.g., {Operating System=Android, Payment Method=Wechat} is covered by
{Operating System=Android, Browser=Chrome, Payment Method=Wechat}
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Combinatorial Interaction Testing (cont’d)

 Constraints can exist over options and values
e E.qg., “if , then BrowserzSafari”
* A pairwise tuple/test case is valid iff it respects all constraints

« Pairwise Covering Array (PCA): a set 1 of valid test cases, such that every
valid pairwise tuple is covered by a test case in 1’

e The size of a PCA is the number of test cases it contains
* Any fault triggered by 2 options can be detected with a PCA
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PCA Initialization and Optimization

 PCA with smaller size = still 100% pairwise coverage, less testing cost
* The two-phase approach to building a small PCA:

 Initialization phase: constructing PCA quickly

* Optimization phase: reducing the size of PCA (e.g., by local search)
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Local search steps: modifying existing test cases in the set
to make them cover the “lost” valid pairwise tuples

* Typically, only one test case will be modified in each step

e The modified test case must be still valid
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Core Problem: Scalability

 PCA optimization can be hard!

» EXisting local search PCA optimization algorithms cannot handle PCAs of
large systems (e.g., systems with > 10° options and many constraints)

 Output PCAs are relatively large = ineffective

» CAmpactor: an effective local search algorithm for PCA optimization (or,
“compacting” PCA)

 Equipped with special technigues to overcome the scalability problem
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* |n the existing work, the modification in a local search step is typically minor
 E.g., changing a single option’s value in a test case

 Some pairwise tuples can be very difficult to cover using only minor modifications
 Mainly due to complex constraints

 Making search stagnate = hindering PCA optimization from going further
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Challenge #1: Hindering Issue (cont’d)

* |n the existing work, the modification in a local search step is typically minor

o Solution: CAmpactor occasionally performs forced patching
e Given an uncovered pairwise tuple 7, chooses a test case 7c

» Uses a specialized SAT solver to find a valid test case #¢’ which guarantees
to cover 7, and is similar to fc

» Replaces fc with t¢’ (thereby 7 will become covered)

 \WWhole test case replacement = major modification

 Being similar = many pairwise tuples covered by 7c are preserved after
modification
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Challenge #2: Cycling Issue

* |n the existing work, the forbidden strategy of local search is usually
specified at the level of a single option’s value

* Not strong enough to prevent local search from stagnating in our case
o Solution: CAmpactor has forbidden strategy at the level of test cases

* Allowing optimization to go deeper



Evaluation

* Adopt a collection of benchmarking system models
* With varying numbers of options and complexities of constraints
 Modeled from real-world systems, adopted in many previous studies



Evaluation

* Adopt a collection of benchmarking system models
* With varying numbers of options and complexities of constraints
 Modeled from real-world systems, adopted in many previous studies
o State-of-the-art competitors: mainly TCA, FastCA and AutoCCAG



Evaluation

* Adopt a collection of benchmarking system models
* With varying numbers of options and complexities of constraints
 Modeled from real-world systems, adopted in many previous studies
o State-of-the-art competitors: mainly TCA, FastCA and AutoCCAG
 Competitors are given the same PCA initialized by SamplingCA
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 RQ1: comparison with SOTA competitors
* Result: CAmpactor is also efficient
» CAmpactor outperforms other competitors even if it is only allowed to run

~10 more seconds in average

CAmpactor|Short” [SamplingCA AutoCCAG FastCA TCA

avg. size 47.4| 82.7 104.0 36.6 36.7 98.1
avg. time 284.6| 52.7 42.1 377.9 357.2 52.7

I
*To save space, we use "Short’ to denote ‘CAmpactor-Short’.

Table 2 in the paper; all the execution times includes that of SamplingCA
CAmpactor-Short uses the running time of TCA as cutoff time
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Summary

« CAmpactor. an novel and effective algorithm dedicated for PCA optimization
* Target: overcoming the scalability problem of PCA optimization

* Tacking the hindering issue with forced patching

* Mitigating the cycling issue by strengthening forbidden strategy
* Result: CAmpactor is effective and also moderately efficient

* For our paper and our tool: check the entry of our paper on FSE’23 website!

Thank you for listening! &









RQ2: Ablation Study

o Alt-1: CAmpactor minus test case level forbidden strategy

o Alt-2: CAmpactor minus test case level forbidden strategy, plus single value
level forbidden strategy

o Alt-3: CAmpactor minus forced patching

Table 3: Average size and average running time of CAmpactor
and all its alternative versions over all instances.

CAmpactor Alt-1 Alt-2 Alt-3

avg. size 474 79.8 543 98.6
avg. time 284.6 67.3 278.7 46.1




RQ4: Generality of CAmpactor

o AIt-A/F/T. using CAmpactor to optimize the output PCA from AutoCCAG/
FastCA/TCA

Table 7: Average size and average running time of AutoCCAG,
FastCA, TCA, Alt-A, Alt-F and Alt-T over all instances.

AutoCCAG Alt-A FastCA Alt-F TCA Alt-T

avg. size 86.6 474 86.7 47.3 98.1 47.3
avg. time 377.9 611.1  357.2 5915 52.7 2934



