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• Combinatorial interaction testing: detecting faults triggered by 
combinations of  option-value pairs (or, -wise tuples)


• Pairwise testing:  fixed to 2

• 2-wise tuple: referred to as pairwise tuple 

• E.g.,  = {Operating System=Android, Payment Method=Wechat}

t t
t

τ



Combinatorial Interaction Testing (cont’d)

• Test case: complete assignment of options



Combinatorial Interaction Testing (cont’d)

• Test case: complete assignment of options

• E.g.,  = {Operating System=Android, Browser=Chrome, Payment 
Method=Wechat}

tc



Combinatorial Interaction Testing (cont’d)

• Test case: complete assignment of options

• E.g.,  = {Operating System=Android, Browser=Chrome, Payment 
Method=Wechat}

tc

• Pairwise tuple  is covered by test case τ tc def= τ ⊆ tc



Combinatorial Interaction Testing (cont’d)

• Test case: complete assignment of options

• E.g.,  = {Operating System=Android, Browser=Chrome, Payment 
Method=Wechat}

tc

• Pairwise tuple  is covered by test case τ tc def= τ ⊆ tc
• E.g., {Operating System=Android, Payment Method=Wechat} is covered by 

{Operating System=Android, Browser=Chrome, Payment Method=Wechat}
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Combinatorial Interaction Testing (cont’d)

• Constraints can exist over options and values
• E.g., “if Operating System=Linux, then Browser≠Safari”

• A pairwise tuple/test case is valid iff it respects all constraints

• Pairwise Covering Array (PCA): a set  of valid test cases, such that every 
valid pairwise tuple is covered by a test case in 

T
T

• The size of a PCA is the number of test cases it contains
• Any fault triggered by 2 options can be detected with a PCA
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PCA Initialization and Optimization

• PCA with smaller size  still 100% pairwise coverage, less testing cost⟹
• The two-phase approach to building a small PCA:
• Initialization phase: constructing PCA quickly
• Optimization phase: reducing the size of PCA (e.g., by local search)
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Core Problem: Scalability

• PCA optimization can be hard!
• Existing local search PCA optimization algorithms cannot handle PCAs of 

large systems (e.g., systems with  options and many constraints)≥ 103

• Output PCAs are relatively large  ineffective⟹

• CAmpactor: an effective local search algorithm for PCA optimization (or, 
“compacting” PCA)
• Equipped with special techniques to overcome the scalability problem
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Challenge #1: Hindering Issue

• In the existing work, the modification in a local search step is typically minor
• E.g., changing a single option’s value in a test case

• Some pairwise tuples can be very difficult to cover using only minor modifications
• Mainly due to complex constraints

• Making search stagnate  hindering PCA optimization from going further⟹
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Challenge #1: Hindering Issue (cont’d)

• In the existing work, the modification in a local search step is typically minor
• Solution: CAmpactor occasionally performs forced patching

• Given an uncovered pairwise tuple , chooses a test case τ tc
• Uses a specialized SAT solver to find a valid test case  which guarantees 

to cover , and is similar to 
tc′￼

τ tc
• Replaces  with   (thereby  will become covered)tc tc′￼ τ
• Whole test case replacement  major modification⟹
• Being similar  many pairwise tuples covered by  are preserved after 

modification
⟹ tc
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Challenge #2: Cycling Issue

• In the existing work, the forbidden strategy of local search is usually 
specified at the level of a single option’s value
• Not strong enough to prevent local search from stagnating in our case

• Solution: CAmpactor has forbidden strategy at the level of test cases
• Allowing optimization to go deeper
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• Adopt a collection of benchmarking system models
• With varying numbers of options and complexities of constraints
• Modeled from real-world systems, adopted in many previous studies

• State-of-the-art competitors: mainly TCA, FastCA and AutoCCAG
• Competitors are given the same PCA initialized by SamplingCA
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• RQ1: comparison with SOTA competitors
• Result: CAmpactor produces roughly 45% smaller PCAs than any other 

competitor in average  CAmpactor is effective⟹
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• Result: CAmpactor is effective and also moderately efficient


• For our paper and our tool: check the entry of our paper on FSE’23 website!

Thank you for listening! 😃





Back Up



RQ2: Ablation Study

• Alt-1: CAmpactor minus test case level forbidden strategy

• Alt-2: CAmpactor minus test case level forbidden strategy, plus single value 

level forbidden strategy

• Alt-3: CAmpactor minus forced patching



RQ4: Generality of CAmpactor

• Alt-A/F/T: using CAmpactor to optimize the output PCA from AutoCCAG/
FastCA/TCA


