CAmpactor: A Novel and
Effective Local Search
Algorithm for Optimizing
Pairwise Covering Arrays

Qiyuan Zhao, Chuan Luo, Shaowei Cai, Wei Wu, S SN
J i n ku n Li n y H on gyu Zh din g y C h unm i n g H U Image credit: https://en.wikipedia.org/wiki/Compactor

For ESEC/FSE 2023

Combinatorial Interaction Testing

Fault
triggered Bug
Reported
er s
a set of test cases under testin
J Test
Passed

No fault
triggered

Combinatorial Interaction Testing

Fault
triggered Bu g

Reported
er s
a set of test cases under testin
J Test
e Passed
triggered

e System under testing: modeled as set of multi-valued options

Combinatorial Interaction Testing

Fault
triggered Bu g

Reported
a set of test cases under testin
J Test
Passed

No fault
triggered

e System under testing: modeled as set of multi-valued options
* Test case: configuration of options

Combinatorial Interaction Testing (cont’d)

 Combinatorial interaction testing: detecting faults triggered by
combinations of 7 option-value pairs

Combinatorial Interaction Testing (cont’d)

Table: System under Testing (SUT)

Operating System Browser Payment Method
Windows Internet Explorer Alipay
Linux Chrome Paypal
Mac OS Microsoft Edge Wechat
Android Safari Visa

 Combinatorial interaction testing: detecting faults triggered by
combinations of 7 option-value pairs

Combinatorial Interaction Testing (cont’d)

Table: System under Testing (SUT)

option Operating System Browser Payment Method

Windows Internet Explorer Alipay
Linux Chrome Paypal

Mac OS Microsoft Edge Wechat

Android Safari Visa

 Combinatorial interaction testing: detecting faults triggered by
combinations of 7 option-value pairs

Combinatorial Interaction Testing (cont’d)

Table: System under Testing (SUT)

option Operating System Browser Payment Method

Windows Internet Explorer Alipay

Linux Chrome Paypal Value Of
Mac OS Microsoft Edge OptiOn
Android Safari Visa

 Combinatorial interaction testing: detecting faults triggered by
combinations of 7 option-value pairs

Combinatorial Interaction Testing (cont’d)

Table: System under Testing (SUT)

option Operating System Browser Payment Method

Windows Internet Explorer Alipay

Linux Chrome Paypal value of
Mac OS Microsoft Edge OptiOn
Android Safari Visa

 Combinatorial interaction testing: detecting faults triggered by
combinations of ¢ option-value pairs (or, 7-wise tuples)

Combinatorial Interaction Testing (cont’d)

Table: System under Testing (SUT)

option Operating System Browser Payment Method

Windows Internet Explorer Alipay

Linux Chrome Paypal value of
Mac OS Microsoft Edge OptiOn
Android Safari Visa

 Combinatorial interaction testing: detecting faults triggered by
combinations of ¢ option-value pairs (or, 7-wise tuples)

 Pairwise testing: 7 fixed to 2

Combinatorial Interaction Testing (cont’d)

Table: System under Testing (SUT)

option Operating System Browser Payment Method

Windows Internet Explorer Alipay

Linux Chrome Paypal value of
Mac OS Microsoft Edge OptiOn
Android Safari Visa

 Combinatorial interaction testing: detecting faults triggered by
combinations of ¢ option-value pairs (or, 7-wise tuples)

 Pairwise testing: 7 fixed to 2
o 2-wise tuple: referred to as pairwise tuple

Combinatorial Interaction Testing (cont’d)

Table: System under Testing (SUT)

Operating System Browser Payment Method

Windows Internet Explorer Alipay

Linux Chrome Paypal

Mac OS Microsoft Edge
Safari Visa

 Combinatorial interaction testing: detecting faults triggered by
combinations of ¢ option-value pairs (or, 7-wise tuples)

 Pairwise testing: 7 fixed to 2
o 2-wise tuple: referred to as pairwise tuple

e E.g., T ={Operating System=Android, Payment Method=Wechat}

Combinatorial Interaction Testing (cont’d)

* Test case: complete assignment of options

Combinatorial Interaction Testing (cont’d)

* Test case: complete assignment of options

e E.g., fc = {Operating System=Android, Browser=Chrome, Payment
Method=Wechat}

Combinatorial Interaction Testing (cont’d)

* Test case: complete assignment of options

e E.g., fc = {Operating System=Android, Browser=Chrome, Payment
Method=Wechat}

. . def
* Pairwise tuple 7 is covered by testcasefc = 7 C fc

Combinatorial Interaction Testing (cont’d)

* Test case: complete assignment of options

e E.g., fc = {Operating System=Android, Browser=Chrome, Payment
Method=Wechat}

. . def
* Pairwise tuple 7 is covered by testcasefc = 7 C fc

 E.g., {Operating System=Android, Payment Method=Wechat} is covered by
{Operating System=Android, Browser=Chrome, Payment Method=Wechat}

Combinatorial Interaction Testing (cont’d)

 Constraints can exist over options and values

Combinatorial Interaction Testing (cont’d)

 Constraints can exist over options and values
e E.g., “if Operating System=Linux, then Browser+Safari”

Combinatorial Interaction Testing (cont’d)

 Constraints can exist over options and values
e E.qg., “if , then BrowserzSafari”
* A pairwise tuple/test case is valid iff it respects all constraints

Combinatorial Interaction Testing (cont’d)

 Constraints can exist over options and values
e E.qg., “if , then BrowserzSafari”
* A pairwise tuple/test case is valid iff it respects all constraints

 Pairwise Covering Array (PCA):

Combinatorial Interaction Testing (cont’d)

 Constraints can exist over options and values
e E.qg., “if , then BrowserzSafari”
* A pairwise tuple/test case is valid iff it respects all constraints

« Pairwise Covering Array (PCA): a set 1 of valid test cases, such that every
valid pairwise tuple is covered by a test case in 1’

Combinatorial Interaction Testing (cont’d)

 Constraints can exist over options and values
e E.qg., “if , then BrowserzSafari”
* A pairwise tuple/test case is valid iff it respects all constraints

« Pairwise Covering Array (PCA): a set 1 of valid test cases, such that every
valid pairwise tuple is covered by a test case in 1’

e The size of a PCA Is the number of test cases it contains

Combinatorial Interaction Testing (cont’d)

 Constraints can exist over options and values
e E.qg., “if , then BrowserzSafari”
* A pairwise tuple/test case is valid iff it respects all constraints

« Pairwise Covering Array (PCA): a set 1 of valid test cases, such that every
valid pairwise tuple is covered by a test case in 1’

e The size of a PCA is the number of test cases it contains
* Any fault triggered by 2 options can be detected with a PCA

PCA Initialization and Optimization

 PCA with smaller size = still 100% pairwise coverage, less testing cost

PCA Initialization and Optimization

 PCA with smaller size = still 100% pairwise coverage, less testing cost
* The two-phase approach to building a small PCA:

PCA Initialization and Optimization

 PCA with smaller size = still 100% pairwise coverage, less testing cost
* The two-phase approach to building a small PCA:
 Initialization phase: constructing PCA quickly

PCA Initialization and Optimization

 PCA with smaller size = still 100% pairwise coverage, less testing cost
* The two-phase approach to building a small PCA:

 Initialization phase: constructing PCA quickly

* Optimization phase: reducing the size of PCA (e.g., by local search)

PCA Optimization By Local Search

PCA Optimization By Local Search

Initialization

WS nitial PCA
ﬁ . size=N

PCA Optimization By Local Search

Initialization . |nitial PCA
— ’ . size=N

removing a test case

PCA Optimization By Local Search

Initialization . |nitial PCA
— ’ . size=N

removing a test case

Not PCA
size=N—I

PCA Optimization By Local Search

Initialization

ﬁ

removing a test case

WS nitial PCA
. size=N

Not péA—>Removing a test case can make
size=N—1 some pairwise tuples become uncovered

PCA Optimization By Local Search

Initialization . |nitial PCA
— ’ . size=N

removing a test case

Not PCA
size=N—1

PCA Optimization By Local Search

Initialization . |nitial PCA
— ’ . size=N

removing a test case

P - -

Not PCA
size=N—1

Local search steps: modifying existing test cases in the set
to make them cover the “lost” valid pairwise tuples

PCA Optimization By Local Search

Initialization

ﬁ

removing a test case

WS nitial PCA
. size=N

P - -

Not PCA
size=N—1

Local search steps: modifying existing test cases in the set
to make them cover the “lost” valid pairwise tuples

* Typically, only one test case will be modified in each step

PCA Optimization By Local Search

Initialization

ﬁ

removing a test case

WS nitial PCA
. size=N

P - -

Not PCA
size=N—1

Local search steps: modifying existing test cases in the set
to make them cover the “lost” valid pairwise tuples

* Typically, only one test case will be modified in each step

e The modified test case must be still valid

PCA Optimization By Local Search

Initialization . |nitial PCA
— ’ . size=N

removing a test case

local search /1
o s .

tc steps
Not PCA
size=N—1

PCA Optimization By Local Search

Initialization

' WS nitial PCA
. size=N
removing a test case
local search /T
e o o o
te Steps te
Not PCA Become PCA again!

size=N—1 size=N-—1

PCA Optimization By Local Search

Initialization . |nitial PCA
— ’ . size=N

removing a test case

local search WSS PCA
o Son o

e steps - size=N—1
Not PCA

size=N—1

PCA Optimization By Local Search

Initialization . |nitial PCA
— ’ . size=N

removing a test case

local search WSS PCA

i s e o o o
tc steps - size=N—1
Not PCA
size=N—1 ——
Not PCA

size=N-—2

PCA Optimization By Local Search

Initialization

' B |nitial PCA
. size=N
removing a test case
local search WSS PCA
C e P
tc steps - Size=N-—1
Not PCA
iva—/N— L L
size=N-1 e —p—p PCA
. « size=N-2
Not PCA

size=N-—2

PCA Optimization By Local Search

Initialization

ﬁ

WS nitial PCA

size=N Repeat reducing &
removing a test case “repairing” PCA, when
| — :
> local search o PCA there is budget
tc steps . size=N—1 _
Not PCA
iza—/N— - R
size=N—1 e > PCA
: . size=N—2
Not PCA I

size=N-—2

PCA Optimization By Local Search

Initialization

ﬁ

removing a test Casel
BN |ocalsearch EEE PCA

WS nitial PCA
. size=N

e S G O
tc steps - size=N—1
Not PCA !
ize=/N— — —
size=N-1 e e o e o PCA
: < size=N-—2
Not PCA I
size=N-2
. ™ PCA
l size=N'
—
© o =P —p

Not PCA

PCA Optimization By Local Search

Initialization

ﬁ

removing a test Casel
BN |ocalsearch EEE PCA

WS nitial PCA
. size=N

i s S
tc steps - size=N—1
Not PCA l
1I7ze=/V— 1]]
size=N-1 e PCA
: . Size=N—2
Not PCA l
size=N-2
™™ PCA
l size=NN'
] e}
T _>_>_>_>_>_>X Budget out,.
(&) search terminates

Not PCA

PCA Optimization By Local Search

Initialization

ﬁ

removing a test Casel
BN |ocalsearch EEE PCA

WS nitial PCA
. size=N

o s . size N 1
tc t - — \[—
Not PCGA | Output the last PCA
size=N—1 — = pop found In the search
e o aan _
« < Size=N—2
Not PCA l
size=N—2
W™ PCA
l size=/N’
’_,_,_,_,_,_,ZBudget out,
(&) search terminates

Not PCA

PCA Optimization By Local Search

Initialization

ﬁ

removing a test Casel
BN |ocalsearch EEE PCA

B |nitial PCA
. size=N

S AL
NotPoa | Output the last PCA
size=N—1 — = pCA found in the search
g < Size=N—2
Not PCA l
size=N—2

The size of found PCA N PCA
keeps decreasing l size=N"
. [ww]
T _>_>_>_>_>_>Z Budget out,.
(&) search terminates

Not PCA

PCA Optimization By Local Search

Initialization B |hitial PCA
ﬁ - size=N
removing a test Casel

BN |ocalsearch BN PCA
s e o .

. - size=N—1
Not PCA Fieps l size=/\ Output the last PCA
size=N—1 — = pCA found in the search
g « size=N—2
Not PCA l
size=N-2

. ™ PCA
. size=N'

;

L [y}
< ——p —>—>—>—>Z

Not PCA

The size of found PCA
kKeeps decreasing

—> the last PCA: the smallest PCA
found In the search

Budget out,
search terminates

Core Problem: Scalability

 PCA optimization can be hard!

Core Problem: Scalability

 PCA optimization can be hard!

» EXisting local search PCA optimization algorithms cannot handle PCAs of
large systems (e.g., systems with > 10° options and many constraints)

Core Problem: Scalability

 PCA optimization can be hard!

» EXisting local search PCA optimization algorithms cannot handle PCAs of
large systems (e.g., systems with > 10° options and many constraints)

 Output PCAs are relatively large = ineffective

Core Problem: Scalability

 PCA optimization can be hard!

» EXisting local search PCA optimization algorithms cannot handle PCAs of
large systems (e.g., systems with > 10° options and many constraints)

 Output PCAs are relatively large = ineffective

» CAmpactor: an effective local search algorithm for PCA optimization (or,
“compacting” PCA)

Core Problem: Scalability

 PCA optimization can be hard!

» EXisting local search PCA optimization algorithms cannot handle PCAs of
large systems (e.g., systems with > 10° options and many constraints)

 Output PCAs are relatively large = ineffective

» CAmpactor: an effective local search algorithm for PCA optimization (or,
“compacting” PCA)

 Equipped with special technigues to overcome the scalability problem

Challenge #1: Hindering Issue

Challenge #1: Hindering Issue

* |n the existing work, the modification in a local search step is typically minor

Challenge #1: Hindering Issue

* |n the existing work, the modification in a local search step is typically minor

 E.g., changing a single option’s value in a test case

Challenge #1: Hindering Issue

* |n the existing work, the modification in a local search step is typically minor

 E.g., changing a single option’s value in a test case
 Some pairwise tuples can be very difficult to cover using only minor modifications

Challenge #1: Hindering Issue

* |n the existing work, the modification in a local search step is typically minor
 E.g., changing a single option’s value in a test case

 Some pairwise tuples can be very difficult to cover using only minor modifications
 Mainly due to complex constraints

Challenge #1: Hindering Issue

* |n the existing work, the modification in a local search step is typically minor
 E.g., changing a single option’s value in a test case

 Some pairwise tuples can be very difficult to cover using only minor modifications
 Mainly due to complex constraints

 Making search stagnate = hindering PCA optimization from going further

Challenge #1: Hindering Issue (cont’d)

* |n the existing work, the modification in a local search step is typically minor

o Solution: CAmpactor occasionally performs forced patching

Challenge #1: Hindering Issue (cont’d)

* |n the existing work, the modification in a local search step is typically minor

o Solution: CAmpactor occasionally performs forced patching

e Given an uncovered pairwise tuple 7, chooses a test case 7c

Challenge #1: Hindering Issue (cont’d)

* |n the existing work, the modification in a local search step is typically minor
o Solution: CAmpactor occasionally performs forced patching

e Given an uncovered pairwise tuple 7, chooses a test case 7c

» Uses a specialized SAT solver to find a valid test case #¢’ which guarantees
to cover 7, and is similar to fc

Challenge #1: Hindering Issue (cont’d)

* |n the existing work, the modification in a local search step is typically minor
o Solution: CAmpactor occasionally performs forced patching

e Given an uncovered pairwise tuple 7, chooses a test case 7c

» Uses a specialized SAT solver to find a valid test case #¢’ which guarantees
to cover 7, and is similar to fc

» Replaces fc with t¢’ (thereby 7 will become covered)

Challenge #1: Hindering Issue (cont’d)

* |n the existing work, the modification in a local search step is typically minor

o Solution: CAmpactor occasionally performs forced patching
e Given an uncovered pairwise tuple 7, chooses a test case 7c

» Uses a specialized SAT solver to find a valid test case #¢’ which guarantees
to cover 7, and is similar to fc

» Replaces fc with t¢’ (thereby 7 will become covered)

 \WWhole test case replacement = major modification

Challenge #1: Hindering Issue (cont’d)

* |n the existing work, the modification in a local search step is typically minor

o Solution: CAmpactor occasionally performs forced patching
e Given an uncovered pairwise tuple 7, chooses a test case 7c

» Uses a specialized SAT solver to find a valid test case #¢’ which guarantees
to cover 7, and is similar to fc

» Replaces fc with t¢’ (thereby 7 will become covered)

 \WWhole test case replacement = major modification

 Being similar = many pairwise tuples covered by 7c are preserved after
modification

Challenge #2: Cycling Issue

Challenge #2: Cycling Issue

* |n the existing work, the forbidden strategy of local search is usually
specified at the level of a single option’s value

Challenge #2: Cycling Issue

* |n the existing work, the forbidden strategy of local search is usually
specified at the level of a single option’s value

* Not strong enough to prevent local search from stagnating in our case

Challenge #2: Cycling Issue

* |n the existing work, the forbidden strategy of local search is usually
specified at the level of a single option’s value

* Not strong enough to prevent local search from stagnating in our case
o Solution: CAmpactor has forbidden strategy at the level of test cases

Challenge #2: Cycling Issue

* |n the existing work, the forbidden strategy of local search is usually
specified at the level of a single option’s value

* Not strong enough to prevent local search from stagnating in our case
o Solution: CAmpactor has forbidden strategy at the level of test cases

* Allowing optimization to go deeper

Evaluation

* Adopt a collection of benchmarking system models
* With varying numbers of options and complexities of constraints
 Modeled from real-world systems, adopted in many previous studies

Evaluation

* Adopt a collection of benchmarking system models
* With varying numbers of options and complexities of constraints
 Modeled from real-world systems, adopted in many previous studies
o State-of-the-art competitors: mainly TCA, FastCA and AutoCCAG

Evaluation

* Adopt a collection of benchmarking system models
* With varying numbers of options and complexities of constraints
 Modeled from real-world systems, adopted in many previous studies
o State-of-the-art competitors: mainly TCA, FastCA and AutoCCAG
 Competitors are given the same PCA initialized by SamplingCA

Evaluation (cont’d)

 RQ1: comparison with SOTA competitors

Evaluation (cont’d)

 RQ1: comparison with SOTA competitors

* Result: CAmpactor produces roughly 45% smaller PCAs than any other
competitor in average —> CAmpactor is effective

140 4 —*— SamplingCA —— FastCA —4— CAmpactor-Short
—¥— TCA —>¢&— AutoCCAG —eo— CAmpactor

120 -
100 -
80 -
60 -
40 - /

Y l \
20 - \

0 20 40 60 80 100 120

Figure 1 in the paper, X-axis: benchmark ID; Y-axis: PCA size in avg.

Evaluation (cont’d)

 RQ1: comparison with SOTA competitors

* Result: CAmpactor produces roughly 45% smaller PCAs than any other
competitor in average —> CAmpactor is effective

140 4 —*— SamplingCA —— FastCA —4— CAmpactor-Short

—¥— TCA —>¢&— AutoCCAG —— CAr?pactor

120 -

100 -
80 -
60 -
40 - /

Y l \
20 - \

0 20 40 60 80 100 120

Figure 1 in the paper, X-axis: benchmark ID; Y-axis: PCA size in avg.

Evaluation (cont’d)

 RQ1: comparison with SOTA competitors
* Result: CAmpactor is also efficient

CAmpactor Short™ SamplingCA AutoCCAG FastCA TCA

avg. size 47.4 82.7 104.0 36.6 36.7 98.1
avg. time 284.6 52.7 42.1 377.9 357.2 52.7

*To save space, we use Short’ to denote ‘CAmpactor-Short .

Table 2 in the paper; all the execution times includes that of SamplingCA
CAmpactor-Short uses the running time of TCA as cutoff time

Evaluation (cont’d)

 RQ1: comparison with SOTA competitors
* Result: CAmpactor is also efficient

CAmpactor Short™ SamplingCA AutoCCAG FastCA TCA

avg. size 47.4 82.7 104.0 36.6 36.7 98.1
avg. time 284.6| 52.7 42.1 377.9 357.2 52.7

*To save space, we use Short’ to denote ‘CAmpactor-Short .

Table 2 in the paper; all the execution times includes that of SamplingCA
CAmpactor-Short uses the running time of TCA as cutoff time

Evaluation (cont’d)

 RQ1: comparison with SOTA competitors
* Result: CAmpactor is also efficient

CAmpactor Short” SamplingCA AutoCCAG FastCA TCA

avg. size 47.4 82.7 104.0 36.6 36.7 98.1
avg. time 284.6| 52.7 377.9 357.2 52.7

*To save space, we use "Short’ to denote ‘CAmpactor-Short’.

Table 2 in the paper; all the execution times includes that of SamplingCA
CAmpactor-Short uses the running time of TCA as cutoff time

Evaluation (cont’d)

 RQ1: comparison with SOTA competitors
* Result: CAmpactor is also efficient
» CAmpactor outperforms other competitors even if it is only allowed to run

~10 more seconds in average

CAmpactor Short™ SamplingCA AutoCCAG FastCA TCA

avg. size 47.4 82.7 104.0 36.6 36.7 98.1
avg. time 284.6 52.7 42.1 377.9 357.2 52.7

*To save space, we use Short’ to denote ‘CAmpactor-Short .

Table 2 in the paper; all the execution times includes that of SamplingCA
CAmpactor-Short uses the running time of TCA as cutoff time

Evaluation (cont’d)

 RQ1: comparison with SOTA competitors
* Result: CAmpactor is also efficient
» CAmpactor outperforms other competitors even if it is only allowed to run

~10 more seconds in average

CAmpactor|Short” [SamplingCA AutoCCAG FastCA TCA

avg. size 47.4| 82.7 104.0 36.6 36.7 98.1
avg. time 284.6| 52.7 42.1 377.9 357.2 52.7

I
*To save space, we use "Short’ to denote ‘CAmpactor-Short’.

Table 2 in the paper; all the execution times includes that of SamplingCA
CAmpactor-Short uses the running time of TCA as cutoff time

Summary

« CAmpactor. an novel and effective algorithm dedicated for PCA optimization
* Target: overcoming the scalability problem of PCA optimization

* Tacking the hindering issue with forced patching

* Mitigating the cycling issue by strengthening forbidden strategy
* Result: CAmpactor is effective and also moderately efficient

* For our paper and our tool: check the entry of our paper on FSE’23 website!

Summary

« CAmpactor. an novel and effective algorithm dedicated for PCA optimization
* Target: overcoming the scalability problem of PCA optimization

* Tacking the hindering issue with forced patching

* Mitigating the cycling issue by strengthening forbidden strategy
* Result: CAmpactor is effective and also moderately efficient

* For our paper and our tool: check the entry of our paper on FSE’23 website!

Thank you for listening! &

RQ2: Ablation Study

o Alt-1: CAmpactor minus test case level forbidden strategy

o Alt-2: CAmpactor minus test case level forbidden strategy, plus single value
level forbidden strategy

o Alt-3: CAmpactor minus forced patching

Table 3: Average size and average running time of CAmpactor
and all its alternative versions over all instances.

CAmpactor Alt-1 Alt-2 Alt-3

avg. size 474 79.8 543 98.6
avg. time 284.6 67.3 278.7 46.1

RQ4: Generality of CAmpactor

o AIt-A/F/T. using CAmpactor to optimize the output PCA from AutoCCAG/
FastCA/TCA

Table 7: Average size and average running time of AutoCCAG,
FastCA, TCA, Alt-A, Alt-F and Alt-T over all instances.

AutoCCAG Alt-A FastCA Alt-F TCA Alt-T

avg. size 86.6 474 86.7 47.3 98.1 47.3
avg. time 377.9 611.1 357.2 5915 52.7 2934

