
For ESEC/FSE 2023

CAmpactor: A Novel and
Effective Local Search
Algorithm for Optimizing
Pairwise Covering Arrays
Qiyuan Zhao, Chuan Luo, Shaowei Cai, Wei Wu,
Jinkun Lin, Hongyu Zhang, Chunming Hu Image credit: https://en.wikipedia.org/wiki/Compactor

Combinatorial Interaction Testing

System

Combinatorial Interaction Testing

• System under testing: modeled as set of multi-valued options

System

Combinatorial Interaction Testing

• System under testing: modeled as set of multi-valued options
• Test case: configuration of options

System

Combinatorial Interaction Testing (cont’d)

• Combinatorial interaction testing: detecting faults triggered by
combinations of option-value pairst

Combinatorial Interaction Testing (cont’d)

• Combinatorial interaction testing: detecting faults triggered by
combinations of option-value pairst

Combinatorial Interaction Testing (cont’d)

• Combinatorial interaction testing: detecting faults triggered by
combinations of option-value pairst

option

Combinatorial Interaction Testing (cont’d)

• Combinatorial interaction testing: detecting faults triggered by
combinations of option-value pairst

option

value of

option

Combinatorial Interaction Testing (cont’d)

• Combinatorial interaction testing: detecting faults triggered by
combinations of option-value pairs (or, -wise tuples)t t

option

value of

option

Combinatorial Interaction Testing (cont’d)

• Combinatorial interaction testing: detecting faults triggered by
combinations of option-value pairs (or, -wise tuples)t t
• Pairwise testing: fixed to 2t

option

value of

option

Combinatorial Interaction Testing (cont’d)

• Combinatorial interaction testing: detecting faults triggered by
combinations of option-value pairs (or, -wise tuples)t t
• Pairwise testing: fixed to 2t
• 2-wise tuple: referred to as pairwise tuple

option

value of

option

Combinatorial Interaction Testing (cont’d)

• Combinatorial interaction testing: detecting faults triggered by
combinations of option-value pairs (or, -wise tuples)

• Pairwise testing: fixed to 2

• 2-wise tuple: referred to as pairwise tuple

• E.g., = {Operating System=Android, Payment Method=Wechat}

t t
t

τ

Combinatorial Interaction Testing (cont’d)

• Test case: complete assignment of options

Combinatorial Interaction Testing (cont’d)

• Test case: complete assignment of options

• E.g., = {Operating System=Android, Browser=Chrome, Payment
Method=Wechat}

tc

Combinatorial Interaction Testing (cont’d)

• Test case: complete assignment of options

• E.g., = {Operating System=Android, Browser=Chrome, Payment
Method=Wechat}

tc

• Pairwise tuple is covered by test case τ tc def= τ ⊆ tc

Combinatorial Interaction Testing (cont’d)

• Test case: complete assignment of options

• E.g., = {Operating System=Android, Browser=Chrome, Payment
Method=Wechat}

tc

• Pairwise tuple is covered by test case τ tc def= τ ⊆ tc
• E.g., {Operating System=Android, Payment Method=Wechat} is covered by

{Operating System=Android, Browser=Chrome, Payment Method=Wechat}

Combinatorial Interaction Testing (cont’d)

• Constraints can exist over options and values

Combinatorial Interaction Testing (cont’d)

• Constraints can exist over options and values
• E.g., “if Operating System=Linux, then Browser≠Safari”

Combinatorial Interaction Testing (cont’d)

• Constraints can exist over options and values
• E.g., “if Operating System=Linux, then Browser≠Safari”

• A pairwise tuple/test case is valid iff it respects all constraints

Combinatorial Interaction Testing (cont’d)

• Constraints can exist over options and values
• E.g., “if Operating System=Linux, then Browser≠Safari”

• A pairwise tuple/test case is valid iff it respects all constraints

• Pairwise Covering Array (PCA): a set of valid test cases, such that every
valid pairwise tuple is covered by a test case in

T
T

Combinatorial Interaction Testing (cont’d)

• Constraints can exist over options and values
• E.g., “if Operating System=Linux, then Browser≠Safari”

• A pairwise tuple/test case is valid iff it respects all constraints

• Pairwise Covering Array (PCA): a set of valid test cases, such that every
valid pairwise tuple is covered by a test case in

T
T

Combinatorial Interaction Testing (cont’d)

• Constraints can exist over options and values
• E.g., “if Operating System=Linux, then Browser≠Safari”

• A pairwise tuple/test case is valid iff it respects all constraints

• Pairwise Covering Array (PCA): a set of valid test cases, such that every
valid pairwise tuple is covered by a test case in

T
T

• The size of a PCA is the number of test cases it contains

Combinatorial Interaction Testing (cont’d)

• Constraints can exist over options and values
• E.g., “if Operating System=Linux, then Browser≠Safari”

• A pairwise tuple/test case is valid iff it respects all constraints

• Pairwise Covering Array (PCA): a set of valid test cases, such that every
valid pairwise tuple is covered by a test case in

T
T

• The size of a PCA is the number of test cases it contains
• Any fault triggered by 2 options can be detected with a PCA

PCA Initialization and Optimization

• PCA with smaller size still 100% pairwise coverage, less testing cost⟹

PCA Initialization and Optimization

• PCA with smaller size still 100% pairwise coverage, less testing cost⟹
• The two-phase approach to building a small PCA:

PCA Initialization and Optimization

• PCA with smaller size still 100% pairwise coverage, less testing cost⟹
• The two-phase approach to building a small PCA:
• Initialization phase: constructing PCA quickly

PCA Initialization and Optimization

• PCA with smaller size still 100% pairwise coverage, less testing cost⟹
• The two-phase approach to building a small PCA:
• Initialization phase: constructing PCA quickly
• Optimization phase: reducing the size of PCA (e.g., by local search)

PCA Optimization By Local Search

PCA Optimization By Local Search

Initialization
!"
…
!"

Initial PCA

size=N

PCA Optimization By Local Search

Initialization
!"
…
!"

!"
…
!"

Initial PCA

size=N

removing a test case

PCA Optimization By Local Search

Initialization
!"
…
!"

!"
…
!"

Initial PCA

size=N

removing a test case

Not PCA

size=N−1

PCA Optimization By Local Search

Initialization

Removing a test case can make

some pairwise tuples become uncovered

!"
…
!"

!"
…
!"

Initial PCA

size=N

removing a test case

Not PCA

size=N−1

PCA Optimization By Local Search

Initialization
!"
…
!"

!"
…
!"

Initial PCA

size=N

removing a test case

Not PCA

size=N−1

PCA Optimization By Local Search

Initialization

…

Local search steps: modifying existing test cases in the set
to make them cover the “lost” valid pairwise tuples

!"
…
!"

!"
…
!"

Initial PCA

size=N

removing a test case

Not PCA

size=N−1

PCA Optimization By Local Search

Initialization

…

Local search steps: modifying existing test cases in the set
to make them cover the “lost” valid pairwise tuples
• Typically, only one test case will be modified in each step

!"
…
!"

!"
…
!"

Initial PCA

size=N

removing a test case

Not PCA

size=N−1

PCA Optimization By Local Search

Initialization

…

Local search steps: modifying existing test cases in the set
to make them cover the “lost” valid pairwise tuples
• Typically, only one test case will be modified in each step
• The modified test case must be still valid

!"
…
!"

!"
…
!"

Initial PCA

size=N

removing a test case

Not PCA

size=N−1

PCA Optimization By Local Search

Initialization
!"
…
!"

!"
…
!"

!"
…
!"

Initial PCA

size=N

removing a test case

Not PCA

size=N−1

local search

steps

PCA Optimization By Local Search

Initialization

Become PCA again!

size=N−1

!"
…
!"

!"
…
!"

!"
…
!"

Initial PCA

size=N

removing a test case

Not PCA

size=N−1

local search

steps

PCA Optimization By Local Search

Initialization
!"
…
!"

!"
…
!"

!"
…
!"

Initial PCA

size=N

removing a test case

Not PCA

size=N−1

PCA

size=N−1

local search

steps

PCA Optimization By Local Search

Initialization
!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

Initial PCA

size=N

removing a test case

Not PCA

size=N−1

PCA

size=N−1

local search

steps

Not PCA

size=N−2

PCA Optimization By Local Search

Initialization
!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

Initial PCA

size=N

removing a test case

Not PCA

size=N−1

PCA

size=N−1

local search

steps

Not PCA

size=N−2

PCA

size=N−2

PCA Optimization By Local Search

Initialization

…

Repeat reducing &
“repairing” PCA, when

there is budget

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

Initial PCA

size=N

removing a test case

Not PCA

size=N−1

PCA

size=N−1

local search

steps

Not PCA

size=N−2

PCA

size=N−2

PCA Optimization By Local Search

Initial PCA

size=N

removing a test case

Initialization

PCA

size=N−1

Not PCA

size=N−2

PCA

size=N−2

…
PCA

size=N′￼

Not PCA

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

Not PCA

size=N−1

local search

steps

PCA Optimization By Local Search

Initial PCA

size=N

removing a test case

Initialization

PCA

size=N−1

Not PCA

size=N−2

PCA

size=N−2

…
PCA

size=N′￼

Not PCA

Budget out,

search terminates

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

Not PCA

size=N−1

local search

steps

PCA Optimization By Local Search

Initial PCA

size=N

removing a test case

Initialization

PCA

size=N−1

Not PCA

size=N−2

PCA

size=N−2

…
PCA

size=N′￼

Not PCA

Budget out,

search terminates

Output the last PCA

found in the search

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

Not PCA

size=N−1

local search

steps

PCA Optimization By Local Search

Initial PCA

size=N

removing a test case

Initialization

PCA

size=N−1

Not PCA

size=N−2

PCA

size=N−2

…
PCA

size=N′￼

Not PCA

Budget out,

search terminates

Output the last PCA

found in the search

The size of found PCA

keeps decreasing

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

Not PCA

size=N−1

local search

steps

PCA Optimization By Local Search

Initial PCA

size=N

removing a test case

Initialization

PCA

size=N−1

Not PCA

size=N−2

PCA

size=N−2

…
PCA

size=N′￼

Not PCA

Budget out,

search terminates

Output the last PCA

found in the search

The size of found PCA

keeps decreasing

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

!"
…
!"

 the last PCA: the smallest PCA

found in the search
⟹

Not PCA

size=N−1

local search

steps

Core Problem: Scalability

• PCA optimization can be hard!

Core Problem: Scalability

• PCA optimization can be hard!
• Existing local search PCA optimization algorithms cannot handle PCAs of

large systems (e.g., systems with options and many constraints)≥ 103

Core Problem: Scalability

• PCA optimization can be hard!
• Existing local search PCA optimization algorithms cannot handle PCAs of

large systems (e.g., systems with options and many constraints)≥ 103

• Output PCAs are relatively large ineffective⟹

Core Problem: Scalability

• PCA optimization can be hard!
• Existing local search PCA optimization algorithms cannot handle PCAs of

large systems (e.g., systems with options and many constraints)≥ 103

• Output PCAs are relatively large ineffective⟹

• CAmpactor: an effective local search algorithm for PCA optimization (or,
“compacting” PCA)

Core Problem: Scalability

• PCA optimization can be hard!
• Existing local search PCA optimization algorithms cannot handle PCAs of

large systems (e.g., systems with options and many constraints)≥ 103

• Output PCAs are relatively large ineffective⟹

• CAmpactor: an effective local search algorithm for PCA optimization (or,
“compacting” PCA)
• Equipped with special techniques to overcome the scalability problem

Challenge #1: Hindering Issue

Challenge #1: Hindering Issue

• In the existing work, the modification in a local search step is typically minor

Challenge #1: Hindering Issue

• In the existing work, the modification in a local search step is typically minor
• E.g., changing a single option’s value in a test case

Challenge #1: Hindering Issue

• In the existing work, the modification in a local search step is typically minor
• E.g., changing a single option’s value in a test case

• Some pairwise tuples can be very difficult to cover using only minor modifications

Challenge #1: Hindering Issue

• In the existing work, the modification in a local search step is typically minor
• E.g., changing a single option’s value in a test case

• Some pairwise tuples can be very difficult to cover using only minor modifications
• Mainly due to complex constraints

Challenge #1: Hindering Issue

• In the existing work, the modification in a local search step is typically minor
• E.g., changing a single option’s value in a test case

• Some pairwise tuples can be very difficult to cover using only minor modifications
• Mainly due to complex constraints

• Making search stagnate hindering PCA optimization from going further⟹

Challenge #1: Hindering Issue (cont’d)

• In the existing work, the modification in a local search step is typically minor
• Solution: CAmpactor occasionally performs forced patching

Challenge #1: Hindering Issue (cont’d)

• In the existing work, the modification in a local search step is typically minor
• Solution: CAmpactor occasionally performs forced patching

• Given an uncovered pairwise tuple , chooses a test case τ tc

Challenge #1: Hindering Issue (cont’d)

• In the existing work, the modification in a local search step is typically minor
• Solution: CAmpactor occasionally performs forced patching

• Given an uncovered pairwise tuple , chooses a test case τ tc
• Uses a specialized SAT solver to find a valid test case which guarantees

to cover , and is similar to
tc′￼

τ tc

Challenge #1: Hindering Issue (cont’d)

• In the existing work, the modification in a local search step is typically minor
• Solution: CAmpactor occasionally performs forced patching

• Given an uncovered pairwise tuple , chooses a test case τ tc
• Uses a specialized SAT solver to find a valid test case which guarantees

to cover , and is similar to
tc′￼

τ tc
• Replaces with (thereby will become covered)tc tc′￼ τ

Challenge #1: Hindering Issue (cont’d)

• In the existing work, the modification in a local search step is typically minor
• Solution: CAmpactor occasionally performs forced patching

• Given an uncovered pairwise tuple , chooses a test case τ tc
• Uses a specialized SAT solver to find a valid test case which guarantees

to cover , and is similar to
tc′￼

τ tc
• Replaces with (thereby will become covered)tc tc′￼ τ
• Whole test case replacement major modification⟹

Challenge #1: Hindering Issue (cont’d)

• In the existing work, the modification in a local search step is typically minor
• Solution: CAmpactor occasionally performs forced patching

• Given an uncovered pairwise tuple , chooses a test case τ tc
• Uses a specialized SAT solver to find a valid test case which guarantees

to cover , and is similar to
tc′￼

τ tc
• Replaces with (thereby will become covered)tc tc′￼ τ
• Whole test case replacement major modification⟹
• Being similar many pairwise tuples covered by are preserved after

modification
⟹ tc

Challenge #2: Cycling Issue

Challenge #2: Cycling Issue

• In the existing work, the forbidden strategy of local search is usually
specified at the level of a single option’s value

Challenge #2: Cycling Issue

• In the existing work, the forbidden strategy of local search is usually
specified at the level of a single option’s value
• Not strong enough to prevent local search from stagnating in our case

Challenge #2: Cycling Issue

• In the existing work, the forbidden strategy of local search is usually
specified at the level of a single option’s value
• Not strong enough to prevent local search from stagnating in our case

• Solution: CAmpactor has forbidden strategy at the level of test cases

Challenge #2: Cycling Issue

• In the existing work, the forbidden strategy of local search is usually
specified at the level of a single option’s value
• Not strong enough to prevent local search from stagnating in our case

• Solution: CAmpactor has forbidden strategy at the level of test cases
• Allowing optimization to go deeper

Evaluation

• Adopt a collection of benchmarking system models
• With varying numbers of options and complexities of constraints
• Modeled from real-world systems, adopted in many previous studies

Evaluation

• Adopt a collection of benchmarking system models
• With varying numbers of options and complexities of constraints
• Modeled from real-world systems, adopted in many previous studies

• State-of-the-art competitors: mainly TCA, FastCA and AutoCCAG

Evaluation

• Adopt a collection of benchmarking system models
• With varying numbers of options and complexities of constraints
• Modeled from real-world systems, adopted in many previous studies

• State-of-the-art competitors: mainly TCA, FastCA and AutoCCAG
• Competitors are given the same PCA initialized by SamplingCA

Evaluation (cont’d)

• RQ1: comparison with SOTA competitors

Evaluation (cont’d)

• RQ1: comparison with SOTA competitors
• Result: CAmpactor produces roughly 45% smaller PCAs than any other

competitor in average CAmpactor is effective⟹

� �� �� �� �� ��� ���
,QGLFHV�RI�,QVWDQFHV

��

��

��

��

���

���

���

$Y
HU
DJ
H�
6L
]H
�R
I�*
HQ
HU
DW
HG
�3
&$
V 6DPSOLQJ&$

7&$
)DVW&$
$XWR&&$*

&$PSDFWRU�6KRUW
&$PSDFWRU

Figure 1 in the paper, X-axis: benchmark ID; Y-axis: PCA size in avg.

Evaluation (cont’d)

• RQ1: comparison with SOTA competitors
• Result: CAmpactor produces roughly 45% smaller PCAs than any other

competitor in average CAmpactor is effective⟹

� �� �� �� �� ��� ���
,QGLFHV�RI�,QVWDQFHV

��

��

��

��

���

���

���

$Y
HU
DJ
H�
6L
]H
�R
I�*
HQ
HU
DW
HG
�3
&$
V 6DPSOLQJ&$

7&$
)DVW&$
$XWR&&$*

&$PSDFWRU�6KRUW
&$PSDFWRU

Figure 1 in the paper, X-axis: benchmark ID; Y-axis: PCA size in avg.

Evaluation (cont’d)

• RQ1: comparison with SOTA competitors
• Result: CAmpactor is also efficient

Table 2 in the paper; all the execution times includes that of SamplingCA
CAmpactor-Short uses the running time of TCA as cutoff time

Evaluation (cont’d)

• RQ1: comparison with SOTA competitors
• Result: CAmpactor is also efficient

Table 2 in the paper; all the execution times includes that of SamplingCA
CAmpactor-Short uses the running time of TCA as cutoff time

Evaluation (cont’d)

• RQ1: comparison with SOTA competitors
• Result: CAmpactor is also efficient

Table 2 in the paper; all the execution times includes that of SamplingCA
CAmpactor-Short uses the running time of TCA as cutoff time

Evaluation (cont’d)

• RQ1: comparison with SOTA competitors
• Result: CAmpactor is also efficient
• CAmpactor outperforms other competitors even if it is only allowed to run

~10 more seconds in average

Table 2 in the paper; all the execution times includes that of SamplingCA
CAmpactor-Short uses the running time of TCA as cutoff time

Evaluation (cont’d)

• RQ1: comparison with SOTA competitors
• Result: CAmpactor is also efficient
• CAmpactor outperforms other competitors even if it is only allowed to run

~10 more seconds in average

Table 2 in the paper; all the execution times includes that of SamplingCA
CAmpactor-Short uses the running time of TCA as cutoff time

Summary

• CAmpactor: an novel and effective algorithm dedicated for PCA optimization

• Target: overcoming the scalability problem of PCA optimization

• Tacking the hindering issue with forced patching

• Mitigating the cycling issue by strengthening forbidden strategy

• Result: CAmpactor is effective and also moderately efficient

• For our paper and our tool: check the entry of our paper on FSE’23 website!

Summary

• CAmpactor: an novel and effective algorithm dedicated for PCA optimization

• Target: overcoming the scalability problem of PCA optimization

• Tacking the hindering issue with forced patching

• Mitigating the cycling issue by strengthening forbidden strategy

• Result: CAmpactor is effective and also moderately efficient

• For our paper and our tool: check the entry of our paper on FSE’23 website!

Thank you for listening! 😃

Back Up

RQ2: Ablation Study

• Alt-1: CAmpactor minus test case level forbidden strategy

• Alt-2: CAmpactor minus test case level forbidden strategy, plus single value

level forbidden strategy

• Alt-3: CAmpactor minus forced patching

RQ4: Generality of CAmpactor

• Alt-A/F/T: using CAmpactor to optimize the output PCA from AutoCCAG/
FastCA/TCA

