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ABSTRACT

The increasing demand for software customization has led to the
development of highly configurable systems. Combinatorial inter-
action testing (CIT) is an effective method for testing these types
of systems. The ultimate goal of CIT is to generate a test suite of
acceptable size, called a t-wise covering array (CA), where ¢t is the
testing strength. Pairwise testing (i.e., CIT with t=2) is recognized to
be the most widely-used CIT technique and has strong fault detec-
tion capability. In pairwise testing, the most important problem is
pairwise CA generation (PCAG), which is to generate a pairwise CA
(PCA) of minimum size. However, existing state-of-the-art PCAG
algorithms suffer from the severe scalability challenge; that is, they
cannot tackle large-scale PCAG instances effectively, resulting in
PCAs of large sizes. To alleviate this challenge, in this paper we
propose CAmpactor, a novel and effective local search algorithm
for compacting given PCAs into smaller sizes. Extensive experi-
ments on a large number of real-world, public PCAG instances
show that the sizes of CAmpactor’s generated PCAs are around 45%
smaller than the sizes of PCAs constructed by existing state-of-the-
art PCAG algorithms, indicating its superiority. Also, our evaluation
confirms the generality of CAmpactor, since CAmpactor can reduce
the sizes of PCAs generated by a variety of PCAG algorithms.
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1 INTRODUCTION

The increasing demand for customized software and services has led
to a growing interest in highly configurable systems [5, 35, 47, 55,
74, 75]. These systems allow users to customize their functionality
by choosing different configurations of options. However, this flex-
ibility also poses challenges for software testing, as the number of
possible configurations can grow exponentially with the number of
options. In practice, many real-world, highly configurable systems
provide users with thousands of options to configure [5, 55, 62].
Given a highly configurable system with 1,000 options, where each
option has 2 possible values, there could be 219 possible configu-
rations, which is a huge number to test. Hence, in practice testing
all possible configurations is usually infeasible.

Combinatorial interaction testing (CIT) is a practical and effec-
tive method for identifying faults in highly configurable systems [5].
CIT involves constructing a test suite (i.e., a set of configurations)
of a reasonable size and then using it to detect faults triggered
by interactions of any ¢ options, where ¢t is the testing strength
[55, 69, 93]. In particular, pairwise testing (i.e., CIT with t = 2) is
the most common CIT technique [62, 73], which is less costly than
CIT with larger ¢ values while still preserving high fault-detecting
ability in practice [16, 30, 39, 40, 83, 94]. For a configurable system,
a pairwise tuple represents the interaction of two options, and pair-
wise testing aims to build a pairwise covering array (PCA) of the
given system, which is a test suite covering all pairwise tuples. It is
crucial to use small-sized PCAs in real-world applications so that a
large amount of testing effort could be saved.

In most real-world scenarios, there are also constraints (e.g., mu-
tual dependencies and exclusiveness) over configurable options.
Test cases (i.e., configurations) in a PCA must satisfy all constraints
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to guarantee the efficiency and accuracy of testing [76]. This re-
quirement gives rise to the pairwise covering array generation
(PCAG) problem, which aims to generate a minimum-sized PCA
that satisfies all constraints, and remains a challenging problem in
pairwise testing. Actually, highly configurable systems correspond
to large-scale instances of the PCAG problem. Since the PCAG prob-
lem is recognized as a hard combinatorial optimization problem
[43, 71], it is challenging to solve the PCAG problem for highly
configurable systems, which urgently calls for practical solutions.

There are three major types of practical PCAG algorithms, i.e.,
constraint-encoding algorithms (e.g., [1, 4, 31, 92, 98]), greedy algo-
rithms (e.g., [8-10, 16, 37, 41-43, 85, 88, 91, 95]) and meta-heuristic
algorithms (e.g., [8, 17-19, 23, 25, 27, 34, 46, 47, 55, 67]). Although
constraint-encoding algorithms can generate PCAs for small-scale
PCAG instances, they cannot handle large-scale instances. Greedy
algorithms can efficiently generate PCAs for medium-scale PCAG
instances, but the generated PCAs are usually of large sizes. Thus,
greedy algorithms are impractical in those application scenarios
with limited testing budget. Compared to constraint-encoding and
greedy algorithms, meta-heuristic algorithms can generate smaller-
sized PCAs at the expense of long execution time. However, exist-
ing PCAG algorithms suffer from the severe scalability challenge
[62, 77, 90]. When handling highly configurable systems with thou-
sands of options, a recent study demonstrates that these PCAG
algorithms require a fairly long time to generate large-sized PCAs
(i.e., constructing large-sized test suites), which would greatly de-
grade the efficiency in testing highly configurable systems [62].

Local search is an effective meta-heuristic search paradigm for
solving hard combinatorial optimization problems [13, 33, 50, 54, 60,
65, 81]. Many state-of-the-art meta-heuristic PCAG algorithms (e.g.,
AutoCCAG[55], FastCA[46], TCA[47]) are based on local search
[46]. These local search algorithms consist of two phases, i.e., the
initialization phase and the optimization phase. In the initialization
phase, an efficient PCAG algorithm (e.g., [16, 95]) is activated to
construct an initial PCA in a short time. Then the optimization
phase begins, where the initial PCA gets compacted (i.e., its size
gets reduced). Recently, Luo et al. proposed the state-of-the-art
PCAG algorithm dubbed SamplingCA [62], which can generate
PCAs for large-scale instances efficiently and therefore is a good
candidate in the initialization phase. Although SamplingCA can
generate PCAs of reasonable sizes, it does not explicitly incorporate
any optimization technique for reducing the sizes of generated
PCAs, leaving room for further optimization.

In this work, we propose CAmpactor, a novel and effective local
search algorithm dedicated for compacting PCAs in the optimiza-
tion phase. CAmpactor adopts a two-mode local search framework
to optimize the sizes of input PCAs iteratively, and works between
the exploitation mode and the exploration mode. In the exploitation
mode, CAmpactor conducts optimization to search for a smaller-
sized PCA, while in the exploration mode CAmpactor tends to
explore promising search space. Given a PCA of size A, CAmpactor
attempts to find a PCA of size A — 1. If a PCA of size A — 1 is found,
then CAmpactor continues to seek a PCA with a further smaller size
(e.g., A — 2). By repeating this procedure, CAmpactor can generate
a highly optimized PCA of smaller size. Furthermore, we propose
two novel and powerful techniques (i.e., assignment-level forbidden
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mechanism and forced patching technique) to further enhance the
effectiveness of CAmpactor and alleviate the scalability challenge.

To evaluate CAmpactor, we conduct extensive experiments on a
large number of publicly available PCAG instances encoded from
real-world highly configurable systems. Our experiments present
that, when using SamplingCA for initialization, CAmpactor can
generate PCAs with around 45% smaller sizes than those from exist-
ing state-of-the-art PCAG algorithms (i.e., SamplingCA, AutoCCAG,
FastCA and TCA), indicating the superiority of CAmpactor. Our
results also confirm the effectiveness of core techniques used in
CAmpactor. Further, the results present the generality of CAmpactor,
since CAmpactor can significantly reduce the sizes of the PCAs
generated by different PCAG algorithms. Our results show that
CAmpactor can effectively mitigate the scalability challenge and
significantly advance the state of the art in pairwise testing.

Our main contributions are summarized as follows.

e We propose CAmpactor, a novel and effective local search
algorithm that can greatly reduce the size of input PCA.

e To enhance the performance of CAmpactor, we propose two
novel and powerful techniques (i.e., assignment-level forbid-
den mechanism and forced patching technique).

e We conduct extensive experiments to present the superiority
of CAmpactor over existing state-of-the-art algorithms. Also,
our results show the effectiveness of core techniques used
in CAmpactor, as well as CAmpactor’s generality.

Potential impact to the community: When integrated with
SamplingCA, CAmpactor can generate small-sized PCAs efficiently.
Compared to existing PCAG algorithms (e.g., TCA, FastCA and
AutoCCAG), CAmpactor can save much time in both preparing
PCAs and conducting tests using the generated PCAs. On the other
hand, CIT has been applied to testing various types of systems
and service, including software APIs [89], security protocols [64],
programming language applications [26], deep learning systems
[14, 63], quantum programs [87], and even mission-critical systems
[39]. Another successful story is that recent deployment of CIT
in LG Electronics exposed critical faults during the testing phase,
thereby avoiding potential financial damage on tens of millions of
dollars [74]. Therefore, CAmpactor might bring benefit in the future
applications of CIT and also the software testing community.

2 PRELIMINARIES

This section presents important definitions and notations.

2.1 Pairwise Covering Array Generation

A configurable system, i.e., a system under test (SUT), can be config-
ured by a finite set of options, denoted as O. Each option o; € O is
related to its value domain Q;, a finite set where o; can take different
values. For real-world configurable systems there usually exists a
set of constraints on the options [76], denoted as H, indicating the
allowed combinations of values of the options in O. This work uses
a pair in the form of (O, H) to represent an SUT.

For an SUT S = (O, H), a test case, also known as a configu-
ration, can be considered as a set of |O| option-value pairs T =
{(01.q1). (02, 92), -, (010)5 CI|O\)}’ which assigns to each option
0; € Oavalue q; € Q;. A test suite is a collection of multi-
ple test cases. Similarly, a pairwise tuple is a set of exactly two
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option-value pairs T = {(0;,4q;), (0j,q;)}, indicating that the op-
tions 0; € O,0; € O take the values g; € Q;, q; € Qj, respectively.
A pairwise tuple 7 is covered by a test case T if r C T, which means
that the values of the two options in 7 are the same with those ones
in T. More generally, a pairwise tuple 7 is covered by a test suite
if 7 is covered by at least one test case in that test suite. For a test
case T and a pairwise tuple = {(0;,q;), (0j,q;)}, we define the
notation T < 7 to denote a new test case T”, satisfying that a) T’
covers 7 and b) for any option o other than o; and o, the values of
option 0 in T and T’ are the same. That is, T < 7 can be understood
as a new test case that overrides T by .

Due to the existence of constraints, for an SUT S = (O, H), a test
case T is valid if T satisfies all constraints in H; otherwise (i.e., T
violates at least one constraint in H), T is invalid. A pairwise tuple
7 is valid if there exists at least one valid test case covering 7. In
practice, invalid test cases would possibly incur incorrect testing
results, so it is crucial to ensure that all test cases are valid.

Given an SUT S = (O, H), a pairwise covering array (PCA) is
a test suite (i.e., a set of valid test cases), which covers all valid
pairwise tuples. For a test suite A, if A is not a PCA, then A is called
a non-PCA test suite. Also, a PCA or a test suite can be represented
as a matrix, where each row is a valid test case, and each entry is
called cell in this work. Particularly, for a test suite A, U(A) denotes
the collection of valid pairwise tuples that are not covered by A.

As a key problem in pairwise testing, the pairwise covering array
generation (PCAG) problem is to find a minimum-sized PCA for the
given SUT. It is recognized that the PCAG problem is a challenging
combinatorial optimization problem [43, 71], which urgently calls
for practical solutions.

Remark: Without loss of generality, following recent studies on
highly configurable systems [5, 60, 62], this work concentrates on
the scenario where each option takes Boolean values; that is, the
value domains of all options are {0, 1}. Actually, it is well acknowl-
edged that the general scenario, where the value domain of each
option is a set of multiple values, can be feasibly transformed into
the binary scenario studied in this work [5, 60, 62]. Furthermore,
the PCAG instances adopted in this work are of binary scenario, and
all of them are transformed from the general scenario and encoded
from practical, highly configurable systems. Hence, it is crucial to
study the binary scenario in PCAG solving.

2.2 Boolean Formulae

Following recent work [2, 5, 6, 45, 60, 62, 68, 82], in this work highly
configurable systems are modeled as Boolean formulae, whose
necessary notations are introduced as follows.

Boolean variables are atoms of Boolean formulae. For a Boolean
variable x, a literal of x is either x itself or its negation —x. A Boolean
formula can be expressed in conjunctive normal form (CNF), i.e., a
conjunction of clauses, where a clause is a disjunction of literals.
For a formula F in CNF, we use V(F) and C(F) to denote the set of
all Boolean variables and the set of all clauses in F, respectively.

Given a Boolean variable x;, its value v; is either 0 or 1. The values
of literals x; and —x; are v; and 1 — v;, respectively. An assignment
of a formula F is a mapping « : V(F) — {0, 1}, which assigns a
Boolean value to each variable. Given an assignment «, a clause
c is satisfied if at least one literal in ¢ evaluates to be 1 under «;
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otherwise, ¢ is unsatisfied. Given an assignment «, if all clauses are
satisfied under «, then « is a solution (i.e., a satisfying assignment);
otherwise, « is an unsatisfying assignment.

Given an SUT S = (O, H), we can transform S into a formula F in
CNF such that O and H correspond to V(F) and C(F), respectively.
Through this way, a valid test case of S is indeed a solution (i.e., a
satisfying assignment) of F, and a pairwise tuple of S is a set of two
literals of F (e.g., the pairwise tuple {(01,0), (02,1)} corresponds to
the set of two literals {—x1, x2}).

Given an SUT S and its corresponding formula F, the PCAG
problem aims to find a set of F’s solutions such that all valid pair-
wise tuples of S are covered. In fact, seeking one solution for a
formula in CNF is known as the influential, propositional satisfi-
ablity (SAT) problem [7], which is a challenging problem in theory.
Hence, to solve the PCAG problem effectively, a practical SAT solver
is indispensable.

A recently proposed SAT algorithm dubbed ContextSAT [62]
shows its high performance in effectively generating valid test cases
for highly configurable systems. ContextSAT [62] is developed based
on MiniSAT [22], a well-known and effective SAT solver. The inputs
of ContextSAT are as follows: a) F: a Boolean formula in CNF; b) L: a
set of literals; ¢) a: an assignment of F. As described in ContextSAT’s
literature [62], apart from these inputs, running ContextSAT needs
to determine a variable order of V(F), which guides the direction
of the backtracking process. In this work, the variable order of
ContextSAT is the one determined by MiniSAT [22]. In this setting,
ContextSAT targets to seek a solution of F, which is similar to a
(i.e, many variables take the same values in ContextSAT’s solution
and «) and guarantees that all literals in L evaluate to be 1. We use
ContextSAT(F, L, @) to denote ContextSAT’s output solution. Partic-
ularly, given a valid pairwise tuple 7, ContextSAT(F, r, ) denotes a
satisfying assignment of F that covers 7 and is similar to a.

3 LOCAL SEARCH PCAG ALGORITHMS

In this section, we describe the general framework of local search
PCAG algorithms, and discuss their limitations.

3.1 General Framework of Local Search

As aforementioned, compared to other types of PCAG algorithms,
meta-heuristic PCAG algorithms are more effective in minimizing
the size of PCA. Also, state-of-the-art meta-heuristic PCAG algo-
rithms (including AutoCCAG [55], FastCA [46] and TCA [47]) are
based on the local search paradigm [46], and local search algorithms
have achieved effectiveness in PCAG solving. Apart from the PCAG
problem, local search has exhibited great success in solving various
hard combinatorial optimization problems [11, 13, 15, 21, 28, 33, 48—
54,56-61, 65, 79, 81]. Thus, CAmpactor is also based on local search.

State-of-the-art local search PCAG algorithms (e.g., AutoCCAG,
FastCA and TCA) consist of two phases, i.e., initialization phase and
optimization phase. In the initialization phase, an efficient PCAG
algorithm is activated (e.g., [16, 95]) to construct an initial PCA.
Then, local search switches to the optimization phase that takes
the initial PCA as input and optimizes the input PCA (i.e., reduces
the size of PCA).

The general framework of the optimization phase of local search
PCAG algorithms is outlined in Algorithm 1. The output of this
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Algorithm 1: Optimization Phase of Local Search for PCAG

Input: F: Boolean formula in CNF;
A: the initial PCA of F;
Output: A*: the optimized PCA of F;
1 A* — A;

2 while no termination criterion is met do
3 if A is a PCA of F then
4

A* — A;
5 Remove an assignment from A;
6 continue ;
7 Perform one operation on A;

s return A*;

phase, denoted by A*, is the smallest-sized PCA found during the
optimization phase, and is updated with the initial PCA A in the
beginning (Line 1 in Algorithm 1). In this phase, local search per-
forms search steps iteratively until the termination criterion is met
(Line 2 in Algorithm 1). In each iteration (i.e., search step), local
search first checks whether A is a PCA (Line 3 in Algorithm 1). If so,
local search updates A* accordingly, and reduces the size of A by 1
through removing an assignment (i.e., a test case) from A, which
possibly makes A no longer be a PCA (Line 4-6 in Algorithm 1).
Otherwise (i.e., A is not a PCA), local search tries to make A become
a PCA by performing one operation on A (Line 7 in Algorithm
1).! When the termination criterion is met, local search stops and
outputs A* (Line 8 in Algorithm 1).

The main idea of the optimization phase is summarized as fol-
lows: local search aims to seek a PCA of a specific size A; once a
A-sized PCA is found, then local search tries to find a PCA of size
A — 1. Hence, the size of A* is decreasing during the search, and A*
is essentially the minimum-sized PCA that local search can find.

3.2 Limitations of Existing Local Search

As introduced in Section 1, existing PCAG algorithms, including
local search ones, suffer from the severe scalability challenge. In
particular, when dealing with highly configurable systems with
thousands of options, a recent empirical study presents that existing
state-of-the-art local search algorithms fail to generate PCAs of
small sizes [62]. Hence, before introducing CAmpactor, we identify
two issues that make existing local search algorithms suffer from
the scalability challenge, and discuss their possible solutions.

3.2.1 Cycling Issue. In the context of local search for combinato-
rial optimization problems, the cycling issue [70], referring to the
circumstance where local search stagnates in a local part of search
space, is a major weakness of local search, and severely degrades
the performance of local search [12].

To handle the cycling issue, it is advisable to equip local search
with effective forbidden mechanisms. Actually, state-of-the-art lo-
cal search PCAG algorithms [46, 47, 55] adopt the well-known
forbidden mechanism, i.e., cell-level tabu mechanism [47], to han-
dle the cycling issue. In particular, the cell-level tabu mechanism
prohibits such operations aiming to modify cells whose values have

!In this work, performing one operation on A means modifying an assignment & € A
via changing the values of cells in .
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been changed recently [47]. When solving large-scale PCAG in-
stances, since there are a large number of candidate operations,
such cell-level tabu mechanism can only prohibit few of them, so
its forbidden strength is relatively weak. However, it is known that,
for a forbidden mechanism, weak forbidden strength (i.e., only few
operations are impermissible) would still make local search suffer
from the cycling issue [49, 52]. Unfortunately, in the context of
PCAG solving, little attention has been paid on enhancing forbid-
den strategies. Thus, an effective solution to the cycling issue is to
strengthen forbidden mechanisms.

3.2.2  Hindering Issue. Given a non-PCA test suite A, in each search
step existing state-of-the-art local search PCAG algorithms (e.g.,
AutoCCAG [55], FastCA[46] and TCA[47]) perform a minor oper-
ation on A, where at most two cells in an assignment ¢ € A get
their values changed. Particularly, in each search step, existing lo-
cal search PCAG algorithms select one uncovered pairwise tuple
7 € U(A) randomly, and attempt to cover 7 by performing one
minor operation on A while preserving the validity of test cases in
A. However, recent studies present that practical SUTs have many
constraints over options (e.g., the well-known FreeBSD operating
system has 62,183 constraints) [5, 60, 62]. Due to the existence of
complex constraints, it is frequently infeasible to cover 7 via per-
forming only one minor operation on A while keeping that all test
cases in A are valid. This hindering issue greatly prevents local
search from being effective.

To alleviate the hindering issue, rather than performing a minor
operation in a search step as existing local search PCAG algorithms
do, it is desirable to perform a major operation, where more than
two cells in an assignment « € A get their values changed, to cover
7 in a search step while satisfying all constraints.

4 OUR PROPOSED CAMPACTOR ALGORITHM

In this section, we propose CAmpactor, a novel and effective local
search algorithm for reducing the size of given PCA.

4.1 Overall Design of CAmpactor

Based on the general framework of local search PCAG algorithms
outlined in Algorithm 1, we propose CAmpactor that is dedicated to
reducing the size of the given PCA. The overall design of CAmpactor
is presented in Algorithm 2. CAmpactor requires two inputs: a) F, a
Boolean formula in CNF that is transformed from an SUT and b)
A, the initial PCA of F generated in the initialization phase. The
output of CAmpactor is A*, an optimized PCA of F.

According to the general framework in Algorithm 1, there are
three essential components: a) the termination criterion, b) the
strategy to select the assignment to be removed from A when A is
a PCA, and c) the mechanism to determine what operation to be
performed on A. We specify and introduce these components in
CAmpactor as follows.

4.1.1 Termination Criterion. For CAmpactor, we design a budget-
aware termination criterion, which works as follows. In the be-
ginning, the search budget is initialized as a large-valued positive
integer y (Line 2 in Algorithm 2). Once a search step (i.e., an iter-
ation) has been conducted, then the search budget decreases by 1
(Line 9 in Algorithm 2). Particularly, whenever A is a PCA, then the
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Algorithm 2: The CAmpactor Algorithm

Input: F: Boolean formula in CNF;
A: the initial PCA of F;
Output: A*: the optimized PCA of F;
1 A* — A;
2 budget «— y;
3 while budget > 0 do
14 if A is a PCA of F then

5 A* — A;

6 Remove the assignment with the smallest loss from A;
7 budget « y;

8 continue;

9 budget «— budget — 1;

10 7 « a random uncovered pairwise tuple in U(A);

1 R={(a,a<71) | a €A age(a) >, a<risvalid};

12 if R # @ then

13 (a*, a* < 7) « operation with the largest profit in R;

14 B Perform operation (a*, a* < 7) on A;

15 else if with probability { then

16 M = {(a, ContextSAT(F,7,a)) | @ € A, age(a) > 6};

17 (e, ContextSAT(F, 7, a*)) « operation with the largest
profit in M;

18 | Perform operation (a”, ContextSAT(F,7,a")) on A;

19 else

20 foreach cell e of A with a random order do

21 a « the assignment where cell e locates;

22 o’ «— a with cell e modified;

23 if o’ is a satisfying assignment then

24 Perform operation (a, a’) on A;

25 L break;

26 return A*;

search budget is reset to y (Line 7 in Algorithm 2). During the local
search process, once the search budget reaches 0, then the entire
search process of CAmpactor terminates (Line 3 in Algorithm 2).

According to our budget-aware termination criterion described
above, CAmpactor terminates if and only if it does not find a smaller-
sized PCA in consecutive y search steps. Actually, y is an integer-
valued hyper-parameter in CAmpactor, and adjusting y can balance
the efficiency and effectiveness of CAmpactor. With a large-valued
¥>» CAmpactor takes longer running time but outputs a smaller-sized
PCA. Conversely, with a small-valued y, CAmpactor terminates
quickly, while the generated PCA is possibly of larger size. The
effect of y will be investigated empirically in Section 6.3.

4.1.2  Removal Strategy. Before describing the removal strategy, we
first define the loss of assignment, a key concept in CAmpactor. For
a PCA A, the loss of an assignment « € A is the number of covered
pairwise tuples that would become uncovered, i.e., the increment
of [U(A)|, if « is removed from A.

Intuitively, in the search process, if there exist more uncovered
tuples, then more operations need to be performed on A to make A
become a PCA. Hence, CAmpactor adopts a greedy removal strategy,
which works as follows: once A becomes a PCA, CAmpactor selects
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the assignment @ € A with the smallest loss to be removed from A
(Line 6 in Algorithm 2).

4.1.3  Operation Determination Method. The operation determina-
tion method is the most important component in CAmpactor, since
it directly guides CAmpactor’s search direction and thus its effec-
tiveness greatly affects the size of output PCA. In fact, two-mode
local search algorithms, which work between the exploitation mode
and the exploration mode, have achieved great success in solving
various combinatorial optimization problems [33, 44, 49, 50, 70].
Therefore, CAmpactor follows the two-mode design. Generally, in
the exploitation mode local search tends to optimize the objec-
tive, while in the exploration mode local search targets to diver-
sify the search direction. More precisely, in the exploitation mode
CAmpactor prefers to conduct those operations that can reduce
the number of uncovered pairwise tuples, i.e., trying to make A be-
come a PCA (Lines 10-18 in Algorithm 2). In the exploration mode
CAmpactor aims to perform such operations that can better explore
the promising search space (Lines 20-25 in Algorithm 2). In this
way, CAmpactor can achieve a good balance between exploitation
and exploration. The technical details of both exploitation mode
and exploration mode are described in the following subsections.

4.2 Exploitation Mode

As aforementioned, in the exploitation mode CAmpactor conducts
operations to reduce the number of uncovered pairwise tuples (i.e.,
decreasing |U(A)|). It is advisable to design the exploitation mode
as follows: first, an uncovered pairwise tuple 7 € U(A) is randomly
selected, and then an operation, which modifies an assignment
a € A to another valid assignment a’ that covers 7, is performed.
Thus, in this work an operation can be expressed by a combination
of two assignments («,a’), which means modifying « to «’ in
A. Based on this design, at least one uncovered tuple (i.e, 7) is
ensured to be covered, so it is possible that |U(A)| (i.e., the number
of uncovered pairwise tuples) could be reduced.

Since there usually exist more than one candidate operation
covering 7, it is necessary to utilize a metric to assess the benefit of
an operation, such that the best candidate operation can be selected.
Thus, we adopt a metric called profit to assess an operation’s benefit.
Given an operation (a, a’), the profit of the operation, denoted by
profit(a, a’), is the decrement in the number of uncovered pairwise
tuples, if the operation is performed (i.e., @ is modified to &’ in A);
particularly, profit(a, ') is calculated as the number of uncovered
pairwise tuples becoming covered minus the number of covered
tuples becoming uncovered, if operation (@, a’) is taken. Clearly,
performing an operation with larger profit brings more benefit.

4.2.1 Assignment-level Forbidden Mechanism. 1t is recognized that
the cycling issue greatly degrades the performance of local search,
and adopting forbidden strategies can reduce the negative conse-
quence. In fact, existing state-of-the-art PCAG algorithms [46, 47,
55] adopt a cell-level tabu mechanism [47], which prevents modi-
fying several cells that have been changed recently. As discussed
in Section 3.2.1, due to its weak forbidden strength, such cell-level
tabu mechanism is ineffective in handling the cycling issue. For the
empirical evidence, readers can refer to Section 6.2.
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For CAmpactor we propose a novel, assignment-level forbid-
den mechanism with strong forbidden strength. Before introduc-
ing our new forbidden mechanism, we define an important no-
tion, i.e, the age of assignment. Given an assignment a € A, the
age of a, denoted by age(a), is the number of search steps that
have been conducted since the last modification of a. Particu-
larly, our assignment-level forbidden mechanism is designed to
strictly prohibit such an operation which aims to modify an as-
signment « that has been changed in the last § search steps (i.e.,
age(a) < ), where  is a positive integer. Following our new for-
bidden mechanism, once the uncovered pairwise tuple r € U(A) is
selected, CAmpactor constructs a candidate set R of operations as
R={(a,a < 1) | a € A age(a) > 8, a < 7is valid}, recalling that
the operator < is defined in Section 2.1, and & < 7 can be understood
as an assignment that overrides a by 7. Then CAmpactor adopts
a greedy operation determination method: after the candidate set
R is constructed, CAmpactor selects and performs the operation
(a*, &* < 1) with the largest profit in R.

When solving a large-scale PCAG instance (which indicates that
an assignment has a large number of cells), compared to the existing
cell-level tabu mechanism, our assignment-level forbidden mecha-
nism can prohibit more operations, and thus has stronger forbidden
strength. In addition, § is a hyper-parameter in CAmpactor that
controls the forbidden strength, and its effect will be analyzed in
Section 6.3.

4.2.2  Forced Patching Technique. In fact, the operation selected by
our forbidden mechanism is a minor operation where an assign-
ment «* is modified to a* < 7. However, as described in Section
3.2.2, due to the existence of complex constraints, the hindering
issue frequently causes that no feasible, minor operation can be
performed to cover the selected, uncovered pairwise tuple 7, which
is a crucial problem that prevents existing local search PCAG algo-
rithms from being effective. Thus, the candidate set R can be empty,
as a frequent scenario.

Once R is empty, a natural solution is to abandon covering r,
and instead to take a minor operation that does not violate any
constraint, so as to continue the search process. That is, the natural
solution directly ignores such crucial problem in the current search
step. However, since 7 cannot be covered by any minor operation,
the same problem would therefore occur in subsequent search steps.

Hence, an advisable solution is to perform a major operation to
make A cover 7 by force. Here we need to address the core technical
challenge, i.e., how to find appropriate operations that cover 7 and
meanwhile make all constraints satisfied.

To address this challenge, we propose an effective forced patch-
ing technique, which leverages the power of a SAT solver, since
a SAT solver can find a satisfying assignment that covers a given
pairwise tuple for a given formula. As described in Section 2.2,
ContextSAT [62] is an effective SAT solver; also, given a formula F
in CNF, a valid pairwise tuple 7 and an assignment « of F as inputs,
ContextSAT can return a satisfying assignment of F that covers 7
and is similar to @, denoted by ContextSAT(F, z, &t). Since we aim
to find such operations that modify an assignment @ € A to cover 7
and meanwhile to satisfy all constraints appearing in F, an advisable
solution is as follows: for each assignment a € A with age(a) > J,
a candidate operation (a, ContextSAT(F, 7, «)) can be constructed.
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Actually, apart from making A cover 7, another important objective
is to make A cover more pairwise tuples. Thanks to the property
that both assignments « and ContextSAT(F, 7, @) are similar, it is
clear that many pairwise tuples exclusively covered by a can be
preserved if the operation (a, ContextSAT(F, r, a)) is performed. In
a nutshell, we can construct a candidate set M of major operations,
i.e, M = {(a, ContextSAT(F,7,a)) | a € A, age(ar) > 5}.

Once the candidate set M of major operations is constructed,
from the candidate set M, CAmpactor selects and performs the
best operation (a*, ContextSAT(F, 7, «*)) with the largest profit. It
is clear that activating the forced patching technique would call
the ContextSAT solver multiple times. Since calling ContextSAT
requires a certain amount of computation time, in order to keep
the efficiency of CAmpactor, we activate the forced patching tech-
nique with a fixed probability ¢. That is, with a fixed probability i,
CAmpactor calls the forced patching technique; otherwise (i.e., with
a probability 1 — /), CAmpactor works in the exploration mode,
which will be introduced in the next subsection. Here ¢/ is a real-
valued hyper-parameter of CAmpactor, and its value domain ranges
from 0 to 1. Since ¥ plays a key role in balancing the effectiveness
and efficiency of CAmpactor, its effect will be studied in Section 6.3.

4.3 Exploration Mode

It is clear that the exploitation mode of CAmpactor aims to modify
the test suite A in a greedy manner. However, existing studies
present that only adopting greedy strategies could make local search
get stuck in a small part of search space [3, 32, 66]. Thus, it is
desirable to incorporate exploration mode into local search.

The task of CAmpactor’s exploration mode is to explore the
promising part of search space. Also, in the context of local search
for solving combinatorial optimization problems, applying ran-
domized strategies in the exploration mode can help local search
better explore promising search space [33, 44, 49, 50, 70]. Based on
this design, in the exploration mode CAmpactor works as follows.
CAmpactor tries to traverse all cells of A with a random order. For
each cell e of A, CAmpactor selects the assignment a where cell e
locates, and tries to modify cell e in a, resulting in a new assignment
a’. Once ' is a satisfying assignment, CAmpactor performs the
minor operation (a, @’) on A, and then terminates its exploration
mode. Through this way, CAmpactor is able to generally perform a
random, minor operation.

4.4 Discussions

Here, we conclude how CAmpactor handles the cycling issue and
the hindering issue, and also we discuss the novelties of forced
patching technique and assignment-level forbidden mechanism.
CAmpactor’s solution to the cycling issue: In Section 4.2.1,
CAmpactor utilizes a novel, assignment-level forbidden mechanism,
which has stronger forbidden strength than existing cell-level tabu
mechanism. As discussed in Section 3.2.1, forbidden mechanisms
with strong forbidden strength can tackle the cycling issue. There-
fore, compared to existing local search algorithms that adopt the
cell-level tabu mechanism, CAmpactor can better alleviate the cy-
cling issue through our assignment-level forbidden mechanism.
CAmpactor’s solution to the hindering issue: From Section
3.2.2, performing major operations can help mitigate the hindering
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issue. Compared to existing local search PCAG algorithms that
generally perform minor operations, CAmpactor can better handle
the hindering issue, through complementing the minor operations
with appropriate major operations, which are determined by our
forced patching technique (as introduced in Section 4.2.2).

As discussed in Section 3.2, both cycling issue and hindering
issue cause existing local search algorithms suffer from the scal-
ability challenge. Since CAmpactor can tackle both issues more
effectively than existing local search algorithms, CAmpactor is able
to better alleviate the scalability challenge, which is confirmed by
our evaluation presented in Section 6.

Discussion on the novelty of each core technique: As dis-
cussed above, we propose to mitigate the hindering issue through
the novel forced patching technique. Its originality is underscored
by the innovative utilization of a SAT solver (i.e., ContextSAT) to
forcibly cover a pairwise tuple and avoid losing many other al-
ready covered pairwise tuples at the same time, which is funda-
mentally different from other local search PCAG algorithms (e.g.,
TCA, FastCA and AutoCCAG). Moreover, due to the existence of
major operations brought by the forced patching technique, we
correspondingly make a new improvement on the existing cell-level
tabu mechanism by elevating the objects of prohibited operations to
the level of assignments (i.e., test cases), resulting in the assignment-
level forbidden mechanism.

5 EXPERIMENTAL PRELIMINARIES

This section describes the experimental preliminaries of this work.

5.1 Public PCAG Instances

In our experiments, we adopt a collection of 124 public PCAG
instances. Each PCAG instance is derived from a practical, highly
configurable system, and is encoded as a Boolean formula in CNF.
These PCAG instances are originally presented by Baranov et al. [5],
and have been broadly evaluated in recent studies on testing highly
configurable systems [5, 36, 45, 60, 62, 72, 77, 78]. For all PCAG
instances, the numbers of options range from 94 to 11,254, and the
numbers of constraints vary from 190 to 62,183. To help readers
better reproduce our experiments, all adopted PCAG instances and
the information of each instance (i.e., the numbers of options and
constraints) are publicly available in our public repository.

5.2 State-of-the-art PCAG Algorithms

In this work, CAmpactor is compared against four state-of-the-art
PCAG algorithms, i.e., SamplingCA [62], AutoCCAG [55], FastCA
[46] and TCA [47], which are described as follows.

SamplingCA [62] is a recently proposed, sampling based PCAG
algorithm, and represents the current state of the art in solving
the PCAG problem. The experiments reported in the literature [62]
show that SamplingCA performs much better than all other PCAG
algorithms (including AutoCCAG, FastCA and TCA) when dealing
with many highly configurable systems. The implementation of
SamplingCA is publicly available.?

AutoCCAG [55] is an advanced approach based on automated
algorithm optimization. As summarized in the literature [55], the

Zhttps://github.com/chuanluocs/CAmpactor
3https://github.com/chuanluocs/SamplingCA
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performance of AutoCCAG is much better than that of other well-
known methods (including CASA [23, 24], TCA [47] and CHiP [69])
on many real-world instances. The source code of AutoCCAG is
obtained from its authors [55].

FastCA [46] is an effective meta-heuristic algorithm. As reported
in the literature [46], FastCA exhibits better performance than a
variety of effective algorithms (including TCA, CASA, ACTS [95]
and HHSA [34]) on extensive application instances. The source code
of FastCA can be obtained online.*

TCA [47] is a high-performance meta-heuristic algorithm. As
demonstrated in the literature [47], TCA greatly reduces the size of
PCAs compared to a number of influential algorithms (including
CASA, ACTS and Cascade [98]) on plenty of practical instances. The
implementation of TCA is publicly available online.’

Also, we conduct experiments to measure the performance of
four other influential PCAG algorithms, i.e., HHSA® [34], CASA7
[23, 24], ACTS® [95] and CTLog” [1]. Since CTLog includes imple-
mentations of multiple algorithms, we test CTLog using the latest
published algorithm called MaxSAT MCAC [1] that is integrated
into CTLog. Our evaluation results show that HHSA, CASA, ACTS
and CTLog fail to construct PCAs for the majority of the testing
instances. To save space, we do not report their results in this paper.
For the full results of HHSA, CASA, ACTS and CTLog, readers can
refer to our public repository.?

5.3 Research Questions

This work aims to advance the state of the art in solving the PCAG
problem. The target of PCAG is to reduce the size of generated PCA,
so our experiments focus on minimizing the size of generated PCA.
We aim to answer the following research questions (RQs).

RQ1. Is CAmpactor able to generate smaller-sized PCAs
than its state-of-the-art competitors?

In this RQ, we compare CAmpactor against four state-of-the-art
PCAG algorithms, i.e., SamplingCA, AutoCCAG, FastCA and TCA
on a variety of public PCAG instances.

RQ2. Does each core technique of CAmpactor contribute
to the performance improvement of CAmpactor?

In this RQ, we conduct extensive experiments to analyze the
effectiveness of all core algorithmic techniques of CAmpactor, i.e.,
assignment-level forbidden mechanism (in Section 4.2.1) and forced
patching technique (in Section 4.2.2).

RQ3. How does each hyper-parameter of CAmpactor im-
pact the effectiveness of CAmpactor?

In this RQ, we conduct empirical evaluation to explore how the
settings of all CAmpactor’s hyper-parameters, i.e., , d and y, impact
the effectiveness of CAmpactor.

RQ4. Can CAmpactor further reduce the sizes of PCAs that
are generated by different PCAG algorithms?

In this RQ, we empirically study whether CAmpactor can opti-
mize the PCAs constructed by different PCAG algorithms.

4https://github.com/jkunlin/fastca

Shttps://github.com/jkunlin/TCA

Chttp://wwwo.cs.ucl.ac.uk/staff/Yue Jia/projects/cit_hyperheuristic/downloads/
Comb_Linux_64.tar.gz

"https://cse.unl.edu/~citportal/
8https://csre.nist.gov/projects/automated-combinatorial-testing-for-software/
downloadable-tools

“http://hardlog.udl.cat/static/doc/ctlog/html/index.html
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Table 1: Results of CAmpactor, CAmpactor-Short, SamplingCA, AutoCCAG, FastCA and TCA on 20 selected PCAG instances.

CAmpactor CAmpactor-Short

Instance

SamplingCA

AutoCCAG FastCA TCA

min.(avg.) time (s) min.(avg.) time (s)

min.(avg.) time (s)

min.(avg.) time (s) min.(avg.) time (s) min.(avg.) time (s)

busybox_1_28_0 24(24.7)  64.3 42 (445) 141 57 (58.8)
calml6_ceb 13(45.2) 2157 77 (81.1)  33.0 100 (103.0)
cq7750 14(46.6) 242.0 81(84.8) 377 103 (105.3)
dreamcast 50 (53.2) 273.9 87 (94.1)  40.1 109 (113.4)
eb40a 15 (46.4) 226.7 77 (80.8)  37.0 99 (103.6)
ecos-icsell 47 (48.7) 2428 81(84.4)  39.6 107 (108.4)
freebsd-icsell 53 (56.2) 354.4 73(77.9) 745 118 (121.7)
integrator_arm9 58 (60.1) 324.9 103 (105.3) 433 118 (122.1)
linux 51(53.9) 279.2 91(98.1) 382 111 (115.3)
mb93091 47 (48.4) 307.0 83 (86.5) 383 103 (106.3)
mpc50 13(45.0) 2533 77 (80.3) 348 96 (100.9)
olpce2294 18(49.7) 3142 83(85.6) 438 106 (109.8)
pc_i82544 18 (49.8) 3142 82(84.7) 443 107 (109.9)
pc_usb_d12 15(47.1) 2788 78 (81.1)  41.9 102 (105.8)
refidt334 52 (54.6) 252.8 84 (89.5) 433 110 (113.5)
sam7ex256 47 (50.3) 293.2 86 (88.2)  45.9 105 (109.6)
sleb 43 (44.5) 229.7 71 (74.7) 34.1 98 (99.3)
uClinux-config 36 (37.6) 3495.2 52 (52.9) 1856.1 64 (66.5)
vrc437s 18(19.8) 257.8 85(88.8)  39.5 105 (109.3)
XSEngine 18(49.7) 2775 81(83.5)  41.1 104 (107.7)

115 45 (47.4) 6376 42 (46.7) 192 53(55.6)  14.1
26.7 81(83.9) 6357 81(84.5) 3837 93(97.0)  33.0
314 84(87.9) 377.0 85(88.1) 341.2 92(99.2) 377
337 89(95.2)  54.6 89(95.6) 3915 102 (107.7)  40.1
29.9 81(85.1) 498.8 81(85.0) 630.4 94(97.2)  37.0
31.1 88(91.9) 589.9 89 (92.4) 3523 99 (102.0) 396
438 78 (82.2) 2639.1 81(83.4) 2076.6 101 (108.4) 745
37.1 101 (105.0)  383.1 101 (105.1)  886.7 115(117.1) 433
32.9 94(97.6)  257.0 92(97.7)  163.2 106 (110.0)  38.2
31.1 85(89.3) 325.9 84(89.2) 4935 97 (101.5) 383
283 80(83.3) 995 79 (83.1) 3833 86(95.2) 348
334 91(93.4) 414.1 91(92.9) 509.6 102 (103.9)  43.8
325 89(93.9) 504 91(93.7) 3427 98 (104.2) 443
324 82(89.2) 467 82(88.8) 545.7 95(100.2)  41.9
33.8 89 (94.5) 677.0 88(94.0) 4785 101 (106.6) 433
36.4 91(93.5) 4327 91(93.5) 177.1 102 (1045)  45.9
26.2 78 (81.4) 3227 78 (81.4) 457.7 90 (93.5)  34.1
1493.0 64 (65.4) 1856.5 64 (65.4) 16133 64 (65.4) 1856.1
324 89(91.9) 988 89 (91.4) 3647 99 (104.0) 395
32.1 86 (89.5) 2362 87 (89.4) 1186 98 (101.1)  41.1

5.4 Experimental Design

Hardware environment: In this work, all experiments are per-
formed on a computing workstation with 2.60GHz Intel Xeon Plat-
inum 8171M CPU and 256GB memory, running the operating sys-
tem of Ubuntu 18.04.4 LTS.

Setting of initialization algorithm: According to Section 4,
CAmpactor aims to reduce the sizes of PCAs. Hence, a PCAG algo-
rithm is first used to initialize a PCA as CAmpactor’s input; then
CAmpactor is activated to optimize such initialized PCA, and the
output of CAmpactor is reported as the final, optimized PCA. Since
a recent study [62] demonstrates that SamplingCA is able to gener-
ate smaller-sized PCAs than AutoCCAG, FastCA and TCA, in this
work CAmpactor adopts SamplingCA as its initialization algorithm.
For simplicity, in our experiments we use CAmpactor to directly
represent CAmpactor’s instantiation that generates its initial PCA
through SamplingCA. In fact, CAmpactor treats the initialization
algorithm as a black box, so CAmpactor is able to integrate any
other PCAG algorithms as its initialization algorithm. To study
the generality of CAmpactor (i.e., whether CAmpactor can further
compact the PCAs output by different PCAG algorithms), the per-
formance of CAmpactor adopting AutoCCAG, FastCA and TCA as
its initialization algorithms will be shown in Section 6.4.

Since CAmpactor employs SamplingCA as its initialization algo-
rithm, in order to make our comparison fair, AutoCCAG, FastCA and
TCA all replace their own initialization algorithms with SamplingCA
in our experiments. We have conducted the evaluation to com-
pare the versions of AutoCCAG, FastCA and TCA, which utilize
SamplingCA as their initialization algorithms, against the origi-
nal versions of AutoCCAG, FastCA and TCA, which use their own,
original initialization algorithms. Actually, according to our evalua-
tion, through adopting SamplingCA as the initialization algorithm,
AutoCCAG, FastCA and TCA achieve considerable performance
improvement. To save space, we do not report these results in this

paper. For the full comparative results, readers can refer to our pub-
lic repository.? For simplicity, in our experiments we directly use
AutoCCAG, FastCA and TCA to denote their versions that construct
initial PCAs through SamplingCA.

Experimental setup: For CAmpactor, its hyper-parameters y, /
and ¢ are set to 10,000, 0.1 and 10, respectively, and the effect of
CAmpactor’s each hyper-parameter will be analyzed in Section
6.3. The implementation of CAmpactor is available in our public
repository.? In our experiments, SamplingCA, AutoCCAG, FastCA
and TCA are evaluated using the hyper-parameter settings recom-
mended by their authors [46, 47, 55, 62].

Since CAmpactor and all its state-of-the-art competitors, i.e.,
SamplingCA, AutoCCAG, FastCA and TCA, are randomized algo-
rithms, we conduct 10 independent runs per instance for each
algorithm. In our experiments, the cutoff time for each algorithm
run is set to 3,600 CPU seconds, as suggested by a recent study on
solving hard combinatorial optimization problems [97].

For each algorithm on solving each PCAG instance, we report
the minimum size of the output PCAs among 10 runs, denoted as
‘min’, the average size of the output PCAs over 10 runs, denoted as
‘avg’, and the running time measured in CPU seconds averaged over
10 runs, denoted as ‘time’. In our experiments, the running time
of CAmpactor, AutoCCAG, FastCA and TCA include the computa-
tional time of their initialization algorithms. To study the overall
performance, for each algorithm, we present the average size and
the average running time over the whole PCAG instance collection.
Since the objective of the PCAG problem is to minimize the size
of generated PCA, in our experiments, for each PCAG instance or
the whole PCAG instance collection, if an algorithm generates the
smallest-sized PCA among all competing algorithms, its results of
‘min’ and ‘avg’ are highlighted using the boldface font.

Statistical significance and effect size calculation: Further-
more, as suggested by recent empirical studies [55, 60, 62], in our
experiments, for each PCAG instance or the whole PCAG instance
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Figure 1: The average sizes of generated PCAs for each instance by all algorithms. The X-axis depicts the indices of instances
that are sorted by the number of options in ascending order, while the Y-axis presents the average size of generated PCA. Each
line in this figure corresponds to one algorithm. Note that the lines of AutoCCAG and FastCA are mostly overlapped.

Table 2: Average size and average running time of CAmpactor,
CAmpactor-Short, SamplingCA, AutoCCAG, FastCA and TCA
over all PCAG instances.

CAmpactor Short" SamplingCA AutoCCAG FastCA TCA

104.0
42.1

86.6  86.7 98.1
377.9 357.2 52.7

avg. size
avg. time

47.4 82.7
284.6 52.7

*To save space, we use ‘Short’ to denote ‘CAmpactor-Short’.

collection, we perform the Wilcoxon signed-rank test [20] to exam-
ine the statistical significance of any pairwise comparison between
CAmpactor and each of its competitors, and we calculate the Vargha-
Delaney effect size [86] for each pairwise comparison. For each
PCAG instance or the whole PCAG instance collection, if a) all the
p-values of Wilcoxon signed-rank tests at 95% confidence level are
smaller than 0.05, and b) the Vargha-Delaney effect sizes for all pair-
wise comparisons (between CAmpactor and each of its competitors)
are larger than 0.71 (implying large effect sizes) [55, 60, 62, 80, 86],
we consider that the performance improvement of CAmpactor over
all its competitors is both statistically significant and meaningful,
and CAmpactor’s results are indicated using underline.

6 EXPERIMENTAL RESULTS

This section reports and analyzes the experimental results.

6.1 Comparisons with State of the Art (RQ1)

The comparative results of CAmpactor and existing state-of-the-art
PCAG algorithms (including SamplingCA, AutoCCAG, FastCA and
TCA) on 20 selected PCAG instances are reported in Table 1. For
these 20 selected PCAG instances, 10 of them are identified to be
representative in a recent study [5], and the other 10 instances are
randomly selected. Due to space limit, we illustrate the average size
of generated PCAs by each competing algorithm for each instance
in Figure 1. Still, all detailed results of CAmpactor and its competi-
tors on the whole instance collection are available in our public
repository.? In addition, the average size and the average running

Table 3: Average size and average running time of CAmpactor
and all its alternative versions over all instances.

CAmpactor Alt-1  Alt-2  Alt-3
avg. size 47.4 798 543 98.6
avg. time 284.6 673 278.7 46.1

time of CAmpactor and its competitors over all PCAG instances are
summarized in Table 2.

From Tables 1 and 2 as well as Figure 1, CAmpactor can gener-
ate much smaller-sized PCAs compared to existing state-of-the-art
PCAG algorithms. In particular, Table 2 presents that CAmpactor is
able to generate PCAs with around 45% smaller sizes compared to
those constructed by existing state-of-the-art algorithms, indicating
the superiority of CAmpactor over all its competitors. As recog-
nized by the literature [29], a PCAG instance, i.e, ecos-icsell,is
challenging to be solved, and it seemed to be impossible to generate
PCAs with the size smaller than 50 for this challenging instance.
More encouragingly, Table 1 demonstrates that CAmpactor is able to
generate PCAs with the average size of 48.7 for the ecos-icsel1 in-
stance, while the average sizes of PCAs constructed by SamplingCA,
AutoCCAG, FastCA and TCA for the ecos-icsel1l instance are
108.4, 91.9, 92.4 and 102.0, respectively. Our experimental results in
Tables 1 and 2 confirm that CAmpactor substantially advances the
state of the art in solving the PCAG problem.

Here we discuss the efficiency of CAmpactor. According to Tables
1 and 2, it is not surprising that CAmpactor requires more running
time than SamplingCA, since CAmpactor adopts SamplingCA as its
initialization algorithm (as described in Section 5.4). When com-
paring to existing state-of-the-art meta-heuristic PCAG algorithms
(i.e., AutoCCAG, FastCA and TCA), although CAmpactor needs more
running time than TCA, CAmpactor runs faster than AutoCCAG
and FastCA. To further study the efficiency of CAmpactor, we de-
note CAmpactor-Short as CAmpactor with shorter running time:
for each instance, CAmpactor-Short’s running time is restricted
to the average running time of TCA for that instance. The results
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Table 4: Average size and average running time of CAmpactor with various hyper-parameter settings of  over all instances.

Y=0 ¢¥=01 ¥=02 ¢=03 =04 ¥=05 =06 Yy=07 Y=08 ¥=09 ¢=1.0
avg. size  98.6 47.4 46.6 46.1 45.9 45.7 45.7 455 45.5 45.4 45.4
avg. time  46.1  284.6 3622  440.8  503.6  569.0  610.8  673.6  710.6 7947 8259

Table 5: Average size and average running time of CAmpactor
with various hyper-parameter settings of § over all instances.

=5 =10 6=15 85=20 =25 6=30

avg. size 47.7 47.4 48.3 49.9 51.9 54.1
avg. time 296.8  284.6  266.1  243.8 2223  202.1

Table 6: Average size and average running time of CAmpactor
with various hyper-parameter settings of y over all instances.

y=10% y=10* y=10* y=10°
avg. size 73.3 55.0 47.4 43.7
avg. time 589  117.2 2846 1,173.2

of CAmpactor-Short are also presented in Tables 1 and 2. Accord-
ing to Table 2, with slightly more running time of 10.6 seconds,
CAmpactor-Short can reduce the average size of SamplingCA’s gen-
erated PCAs by 21.3 over all PCAG instances. As outlined in Algo-
rithm 2, CAmpactor tackles the PCAG problem by iteratively solving
the decision sub-problem of finding a PCA of size 4; if a A-sized PCA
is found, CAmpactor continues to find a PCA of size 1 —1. Intuitively,
compared to solving a decision sub-problem with smaller A, solving
a decision sub-problem with larger A is simpler and thus requires
less time. Hence, it is not surprising that CAmpactor greatly opti-
mizes SamplingCA’s output PCAs efficiently. Also, with the same
running time, the average size of PCAs output by CAmpactor-Short
is 82.7, while this number for SamplingCA+TCA is 98.1. Moreover,
CAmpactor-Short still outperforms AutoCCAG and FastCA, confirm-
ing both effectiveness and efficiency of CAmpactor.

6.2 Effects of Core Techniques (RQ2)

There are two core techniques of CAmpactor, i.e., assignment-level
forbidden mechanism (in Section 4.2.1) and forced patching tech-
nique (in Section 4.2.2). To study the effect of assignment-level
forbidden mechanism, based on CAmpactor we develop two alter-
native versions, i.e., Alt-1and Alt-2: Alt-1is CAmpactor’s alternative
version that directly works without our assignment-level forbidden
mechanism, while Alt-2 is CAmpactor’s alternative version that
replaces the assignment-level forbidden mechanism with the cell-
level tabu mechanism [47] used in AutoCCAG, FastCA and TCA.
To analyze the effect of our forced patching technique, we remove
the forced patching technique from CAmpactor, resulting in an
alternative version of CAmpactor called Alt-3.

Table 3 shows the average size and the average running time
of CAmpactor and all its alternative versions over all PCAG in-
stances. From Table 3, CAmpactor generates smaller-sized PCAs

Table 7: Average size and average running time of AutoCCAG,
FastCA, TCA, Alt-A, Alt-F and Alt-T over all instances.

AutoCCAG Alt-A  FastCA Alt-F TCA Al+-T

avg. size 86.6 47.4 86.7 47.3 98.1 47.3
avg. time 3779 611.1 357.2 5915 52.7 2934

than all its alternative versions, indicating that each core technique
of CAmpactor greatly contributes to the performance improvement.

6.3 Impacts of Hyper-parameter Settings (RQ3)

According to Section 4, CAmpactor has three hyper-parameters, i.e.,
¥, 8 and y, recalling that ¢ controls the probability of activating
the forced patching technique (in Section 4.2.2), § is used in the
assignment-level forbidden mechanism (in Section 4.2.1), and y
decides when CAmpactor terminates (in Section 4.1.1). Here we
analyze how the settings of these three hyper-parameters impact
the practical performance of CAmpactor.

Tables 4, 5 and 6 report the performance of CAmpactor with
different settings of ¢, § and y, respectively. According to Table 4,
where the value domain of / ranges from 0 to 1, with the increment
0f 0.1, in terms of average size of generated PCAs, CAmpactor shows
robustness when ¢ > 0.1. From Table 5, where the value domain of
d varies from 5 to 30, with the increment of 5, CAmpactor generates
the smallest-sized PCAs when 4 is set to 10, and CAmpactor shows
its effectiveness when § is around 10. Table 6, where the value
domain of y is {102, 103,104, 105}, shows that when y is set to a
larger value (i.e., the searching budget of CAmpactor enlarges),
CAmpactor generates smaller-sized PCAs and meanwhile requires
longer running time. Hence, CAmpactor is a flexible algorithm,
since it can balance effectiveness and efficiency via adjusting y.

6.4 Optimizing Other PCAG Algorithms (RQ4)

According to Section 5.4, in the preceding experiments (Tables 1-6),
CAmpactor adopts SamplingCA as its initialization algorithm, and
the related results present that CAmpactor can greatly reduce the
size of PCA constructed by SamplingCA. Here we aim to analyze
whether CAmpactor can optimize the PCAs output by other state-of-
the-art PCAG algorithms. Hence, we integrate AutoCCAG, FastCA
and TCA into CAmpactor as CAmpactor’s initialization algorithm
(i.e., using CAmpactor to optimize the PCAs output by AutoCCAG,
FastCA and TCA), resulting in three new alternative versions of
CAmpactor, i.e, Alt-A, Alt-F and Alt-T, respectively.

Table 7 presents the comparative results of AutoCCAG, FastCA,
TCA, Alt-A, Alt-F and Alt-T on all instances. According to Table
7, the average sizes of PCAs output by AutoCCAG, FastCA and
TCA are 86.6, 86.7 and 98.1, respectively. Encouragingly, after the
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optimization of CAmpactor, their average sizes are decreased to
47.4, 47.3 and 47.3, respectively. Also, for AutoCCAG, FastCA and
TCA, the additional running time brought by CAmpactor is around
240 seconds. Hence, our evaluation demonstrates that CAmpactor
can further optimize PCAs output by different PCAG algorithms
effectively and efficiently, indicating the generality of CAmpactor.

6.5 Threats to Validity

There are two potential threats to validity of this work.

Representativeness of adopted instances: Our evaluation
adopts a diverse collection of 124 public PCAG instances, where
each instance is collected from a real-world, highly configurable
system. According to Section 5.1, these adopted instances cover a
broad range of numbers of options and constraints, and they have
been extensively studied in plenty of recent work [5, 36, 45, 60, 62,
72,77, 78]. Therefore, this threat can be mitigated.

Randomness of competing approaches in our experiments:
There are 5 PCAG algorithms evaluated in our experiments, ie.,
CAmpactor, SamplingCA, AutoCCAG, FastCA and TCA, all of which
are randomized algorithms. For a randomized algorithm, conduct-
ing one single run per instance might not precisely evaluate its
performance. Following recent studies [46, 47, 55], for each algo-
rithm we perform 10 independent runs per instance. Moreover,
as described in Section 5.4, we conduct the significance test and
calculate the effect size to examine the comparative results. As a
result, this potential threat can be reduced.

7 RELATED WORK

As an important topic of software testing, combinatorial interaction
testing (CIT) has been widely studied. For literature reviews on CIT,
readers can refer to surveys [71, 84] and books [38, 96]. Recently,
CIT has shown its usefulness in testing critical systems from diverse
real-world applications, as introduced in Section 1. Pairwise testing
is the most common CIT technique [62], since it can be feasibly
performed in practice while keeping strong ability to detect faults
[16, 30, 39, 83, 94]. This work aims to advance the state of the art
in solving the PCAG problem, a core problem in pairwise testing.

There are three main classes of practical PCAG algorithms, i.e.,
constraint-encoding algorithms (e.g., [1, 4, 31, 92, 98]), greedy algo-
rithms (e.g., [8-10, 16, 37, 41-43, 85, 88, 91, 95]) and meta-heuristic
algorithms (e.g., [8, 17-19, 23, 25, 27, 34, 46, 47, 55, 67]). Given a
PCAG instance, constraint-encoding PCAG algorithms first encode
it into an instance of other combinatorial optimization problems,
and then existing optimization solvers are used to solve the en-
coded instance [1, 4, 31, 92, 98]. In practice, constraint-encoding
algorithms can only generate PCAs for small-scale instances. How-
ever, they cannot handle large-scale PCAG instances effectively.

Greedy algorithms, subdivided into one-test-at-a-time (OTAT)
and in-parameter-order (IPO) types, are suited for medium-scale
instances but may generate large PCAs, which makes them not
applicable in such application scenarios with limited time budget.
The OTAT category was pioneered by the AETG algorithm [16],
while the IPO strategy was initially introduced by Lei and Tai [43].
Both have numerous improved variants and are widely used [8—
10, 37, 41, 42, 85, 88, 92, 95], including the famous ACTS tool that
has been widely utilized in both academia and industry [95].
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Compared to constraint-encoding algorithms and greedy algo-
rithms, meta-heuristic PCAG algorithms can generate PCAs of
significantly smaller sizes yet require much longer running time.
Meta-heuristic algorithms iteratively search for smaller-sized PCAs
via advanced searching strategies. In practice, there are various
types of meta-heuristic algorithms, including simulated annealing
(e.g., CASA [23, 24]), hyper-heuristic search (e.g., HHSA [34]) and
local search (e.g., TCA[47], FastCA[46] and AutoCCAG [55]). Un-
fortunately, existing PCAG algorithms (including the three classes
of algorithms introduced above) suffer from the severe scalability
challenge [62, 77, 90]: when dealing with highly configurable sys-
tems with thousands of options, existing PCAG algorithms require
much running time to construct large-sized PCAs, which would
make testing highly configurable systems considerably inefficient.

To alleviate the scalability challenge, Luo et al. proposed a state-
of-the-art PCAG algorithm dubbed SamplingCA [62], which can
generate PCAs for large-scale instances fast via effective sampling
techniques. However, SamplingCA does not explicitly incorporate
any optimization technique to reduce the size of its generated PCA,
so the size can be further reduced. This work proposes CAmpactor,
which can compact PCAs of large-scale instances into much smaller-
sized efficiently in experimental evaluations and therefore would
nicely complement SamplingCA. Since constructing small-sized
PCAs is important in practice, we believe that the proposal of
CAmpactor can alleviate the scalability challenge more effectively
and significantly advance the state of the art in PCAG solving.

8 CONCLUSION

In this work, we propose a novel and effective local search PCAG
algorithm named CAmpactor which can further alleviate the scala-
bility challenge. In particular, CAmpactor incorporates two novel
techniques, i.e., assignment-level forbidden mechanism and forced
patching technique, to enhance its performance. Our extensive ex-
periments on 124 public instances clearly present that CAmpactor
generates much smaller-sized PCAs than existing state-of-the-art
PCAG algorithms. Moreover, our evaluation confirms the effects of
all core techniques of CAmpactor and present that CAmpactor can
further optimize the PCAs output by different PCAG algorithms.

9 DATA AVAILABILITY

The source code of CAmpactor, all adopted PCAG instances and the
detailed experimental results are available in our public repository:
https://github.com/chuanluocs/CAmpactor.
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