Compositional Verification of
Composite Byzantine Protocols

Qiyuan Zhao, George Pirlea,
Karolina Grzeszkiewicz, N US
Seth Gilbert, llya Sergey ' of simgapore

For CCS 2024




Distributed Protocols
adWws

* Distributed systems are important! N

 Scalability, reliability, performance, ...
» Theoretical foundation: distributed protocols

» Defining how a node collaborates with other nodes

It is well-known that distributed systems are very important these days.
They support various Internet services, and usually they can provide better scalability, reliability, performance than traditional centralized systems.

While the benefits of distributed systems are clear, fundamentally their correctness relies on the underlying distributed protocols, where a distributed protocol defines
how a distributed computing node, will collaborate with other nodes to solve a specific problem.




Byzantine Fault Tolerance

* Fault tolerance: a key goal in protocol design
* Byzantine fault:

* Faulty nodes that can deviate from the protocol arbitrarily

The Byzantine Generals Problem

LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE
SRl International

For a distributed protocol to be practical, it must account for potential faults in real-world systems, such as node crashes, message drops and (message) delays.
A fault-tolerant protocol can work correctly even in the presence of faults.

Among the various notions of faults, the Byzantine fault, which was initially introduced in this paper, has received particular attention.
A Byzantine node, meaning a node experiencing Byzantine fault, can deviate from the protocol arbitrarily.
Due to such characteristic, Byzantine nodes can represent malfunctioning nodes, or, even malicious attackers trying to corrupt the system.



Byzantine Fault Tolerance Protocols

* Key in ensuring the reliability and integrity of various Internet services

The latest gossip on BFT consensus

Ethan Buchman, Jac Kwon and Z HotStuff: BFT Consensus in the Lens of Blockchain

Bullshark: DAG BFT Protocols Made Practical  Guy Golan Gueta’, and Ittai Abraham’

Alexander Spiegelman
sasha.spiegelman@gmail.cor

cenl 3TTATA AL 1 TTEN

Jolteon and Ditto: Network-Adaptive Efficient Consensus with Asynchronous

Aptos Fallback
Alberto Sonnino
alberto@sonnino.com  Rati Gelashvili Lefteris Kokoris-Kogias Alberto Sonnino Alexander Spiegelman
Mysten Labs Novi Research Novi Research & IST Austria Novi Research Novi Research
Zhuolun Xiang*

University of Illinois at Urbana-Champaign

4

To address the challenges posed by Byzantine faults, Byzantine fault tolerance protocols, or BFT protocols, have been developed for ensuring the reliability and integrity
of security-critical systems such as blockchains.

The challenge of designing efficient BFT protocols has been a long-standing research problem, and in recent years, new BFT protocols continue to be proposed.



BFT Protocols Are Hard to Get Right

However, the designs of BFT protocols are often complicated and prone to bugs.
Some BFT protocols have been found to contain deep bugs in their design.



BFT Protocols Are Hard to Get Right

O dranov / protocol-bugs-list

Errors found in distributed protocols

Protocol Reference Violation Counter-example #Year(s) taken to
discover the bug

safety &
Sync HotStuff [Abraham et al. 2019] . v [Momose and Cruz 2019] < 1
liveness —
Tendermint [Buchman 2016] liveness [Cachin and Vukoli¢ 2017] ~ 1
hBFT [Duan et al. 2015] safety [Shrestha et al. 2019] ~ 4
Kotla et al. 2007; Kotla et
Zyzzyva [Kotla e :I. 2010]' otae safety [Abraham et al. 2017] ~7

[Martin and Alvisi 2005;

FaB P li Abrah t al. 2017 ~
av raxos Martin and Alvisi 2006] veness [Abraham et al. 2017] ~12

pBFTLI [Castro and Liskov 1999] liveness [Berger et al. 2021]

~ 22

Source: https://github.com/dranov/protocol-bugs-list

To illustrate this, let me show you a list of bugs in various BFT protocols. This list is publicly available on Github.

As you can see, the bugs violate different aspects of guarantees, and the time it took to uncover them ranges from 1 year to over twenty years.



BFT Protocols Are Hard to Get Right

€ iepsen () QUINT <P
A\

APALACHE

» Testing or model checking BFT protocols may not be effective

» Byzantine behavior = large search space

» Precisely capturing Byzantine behavior is difficult

Even though there are a bunch of tools for specifying, model checking or testing distributed systems, they may not be effective in exposing the bugs in BFT protocols.
One reason is that the non-determinism nature of Byzantine behavior leads to large search space, which can cause state explosion in model checking, and for testing, we

need good heuristics to effectively sample testing scenarios.
Additionally, precisely capturing Byzantine nodes’ behavior is also difficult! For example, we often need to constrain Byzantine nodes in a realistic setting, such as

ensuring they cannot forge digital signatures. Formally expressing such constraints and applying them can be subtle.



Verification Builds Trust

* Reducing the risk of having bugs by formal verification

» Proving properties rigorously with proofs aided/checked by machine

Formal Veriﬁc ation IronFleet: Proving Practical Distributed Systems Correct

o f aRe al 1 S tl cC OmDiler chris Verdi: A Framework for Implementing and

: g B' Formally Verifying Distributed Systems
CakeML: A Verified Implementation of Ml yy: Safety Verification by Interactive Generalization

CertiKOS: An Extensible Architecture for Build Velisarios: Byzantine Fault-Tolerant Protocols
Certified Concurrent OS Kernels Oded Py Powered by Coq *

seL4: Formal Verification of a1 ™ B.f;éfamming and Proving with Distributed Protocols
Operating-System Kernel Aneris: A Mechanised Logic for Modular

ILYA SERC . . .
Lo .. . Reasoning about Distributed Systems
HACL*: A Verified Modern Cryptographic Libra JAMESR. g Y
ZACHARY
Karim Zinzindohoué Karthik Bh: |
Jean unMRnerzm onous e);;x}:IA argava Morten Krogh-Jespersen, Amin Timany®*, Marit Edna Ohlenbusch,
Jonathan Protzenko Benjamin Beurdouche 1 Simon Oddershede Gregersen®, and Lars Birkedal

Microsoft Research

Aarhus University, Aarhus, Denmark

A promising way to reduce the risk of having bugs is to do formal verification by proving properties rigorously with proofs aided/checked by machine.

There have been many verification projects targeting at large systems, including compilers, operating systems, and cryptographic libraries.
There is also a thread on formally verifying distributed systems.



Verification is Also Laborious

IronFleet: Proving Practical Distributed Systems Correct
113
Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, P roofs take 39253 LoC
Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill nn tota/ ”

Microsoft Research

Velisarios: Byzantine Fault-Tolerant Protocols

bt D8 i “Verifying PBFT takes
around 20000 lines of specs
and around 20000 lines of proofs”

Vincent Rahli B}, Ivana Vukotic, Marcus Vélp, Paulo Esteves-Verissimo

SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
firstname. lastname@uni. lu

» Such great efforts are difficult to reuse!

While verification builds trust, it is also laborious.

For example, the iron fleet project required around 40k lines of proofs in total.

The Velisarios project aimed at verifying the safety of the PBFT protocol and it took around 20000 lines of specs and around 20000 lines of proofs.
Although both projects represent excellent efforts, their frameworks do not explicitly support reusing verified protocols when verifying a new protocol.



Compositionality For The Win

» Compositionality: the conventional wisdom in doing verification
» Separation of specification and implementation

* Modularity & proof reuse

C specification ) C specification ) C specification )

i proof [ proof i proof

implementation implementation implementation

10

In the verification community, the conventional approach to achieving proof reuse is through compositionality.
Compositionality allows for the separation of specification and implementation.
Moreover, compositionality enables modularity and proof reuse. Individual components can be verified separately,



Compositionality For The Win

» Compositionality: the conventional wisdom in doing verification
» Separation of specification and implementation

* Modularity & proof reuse

use already proved specifications

C specification ) C specification ) C specification )

1 proof 1 proof 1 proof

implementation implementation implementation

i

Once these components are integrated into a larger system, we can reuse the already proved specifications of those components to derive the overall specification,
without the need to reprove everything from scratch.



Compositionality For The Win

» Composition: strategy for reducing conceptual complexity in BFT protocol design

Linea }
provable E;; trodru': ;';Yvo Round HotStuff
Written by Ittai Abraham, Alex B z en by Ittai Abraham

e Posted on N
Posted on September 10, 2022 Wri ant,nw - Ovember 24, 202
- Do e by ltta; Apygy,

am

osted op NouembeT 20, 2022 eranCe’

Check EV T

Check EV_1 Check EV_2 Check EV_3

\/V

» > Delivery-
n- n- n- Certificate
Key- Lock- Formed
Certificate Certificate
Formed Formed
Blog source: https://decentralizedthoughts.github.io/

Image credit: https://decentralizedthoughts.github.io/2022-09-10-provable-
broadcast/

Sender s

12

On the other hand, composition is a strategy for reducing conceptual complexity in BFT protocol design.

There have been a series of blog posts on how to construct complex BFT protocols with some protocol as the building block.
The building block might be iterated for several times to strengthen its guarantee.


https://decentralizedthoughts.github.io/

We want to make verification compositional
for (potentially composite) BFT protocols.

13

To put it simply, what we want to achieve in this work is make verification compositional

for (potentially composite) BFT protocols.




Our Contribution

* BYTHOS: streamlining the verification of BFT protocols and their compositions

 Embedded in the Coq proof assistant = foundational
» The first framework that supports:
M Reasoning about Byzantine faults
M Modular safety & liveness proofs of BFT protocols
M Proof reuse for verifying composite BFT protocols

M Executable reference implementation extracted to OCaml

14

To this end, we propose Bythos, the framework for streamlining the verification of BFT protocols and their compositions.
Bythos is embedded in the Coq proof assistant. It provides foundational guarantee on the properties that we can prove using it.
To the best of our knowledge, it is the first framework supporting the following points altogether: ...



Our Contribution

* BYTHOS: streamlining the verification of BFT protocols and their compositions

 Embedded in the Coq proof assistant = foundational
» The first framework that supports:
M Reasoning about Byzantine faults

Modular safety & liveness proofs of BFT protocols

Proof reuse for verifying composite BFT protocols

M Executable reference implementation extracted to OCaml

15

Our technical novelty focuses on the composition aspect, specifically ...



Outline

» Knowledge-Driven Proof Methodology

16

Let me first introduce our knowledge-driven proof methodology, which is key to modularizing safety and liveness proofs.



Proving Safety Properties

» Safety: “bad thing never happens”

* The standard approach to proving safety:

« Finding an inductive invariant /

« Inductive: [ is preserved after any transition

initial state
« Showing that I implies the desired safety property s

17

The safety properties of a distributed protocol assert that bad things will never happen during the protocol execution.
By modeling the distributed system as a state machine, proving safety amounts to showing that the set of reachable states is included in the set of safe states.

The standard approach to proving safety is to first find an inductive invariant I, which is preserved after any transition of the state machine, and then show that | implies
the desired safety property.

Intuitively, the inductive invariant is for approximating the protocol, by (next slide)



Inductive Invariants

» Summarize the knowledge (or, causality) about protocol execution
* “What we can know about the past by looking at the current state”

* Coming up with the inductive invariant all at once is difficult!

Planning for Change in a Formal Verification “We present the first formal

of the Raft Consensus Protocol verification of state machine
safety for the Raft consensus

Doug Woos ~ James R. Wilcox ~ Steve Anton 'OrthCO/' [ j ] \ . )
Zachary Tatlock ~ Michael D. Ernst ~ Thomas Anderson This pr 00f 1 equirt ed iterati Vely

University of Washington, USA discovering and proving 90
{dwoos, jrw12, santon, ztatlock, mernst, tom}@cs.washington.edu SySi'em Invarlants. ”

18

... summarizing the knowledge (or, causality) about protocol execution.

The knowledge or causality here can be basically stated in the form like “what we can know about the past by looking at the current state”.
However, coming up with the useful inductive invariant all at once is difficult.

For example, in the Verdi project where the safety of the Raft protocol was verified, in total 90 invariants were involved in the proof.



Knowledge-Driven Proof of Safety

* Knowledge lemmas: Systematically capturing low-level properties of the
protocol that directly follow from the protocol design

* Higher-level knowledge can be incrementally built upon lower-level knowledge

Safety

Level of knowledge Inductive
Invariant

Knowledge lemmas

19

To reduce the intellectual burden of finding the inductive invariant, we propose the concept of knowledge lemmas for systematically capturing low-level properties of
the protocol that directly follow from the protocol design.

From the perspective of knowledge, these lemmas represent the kind of low-level knowledge that can be easily obtained by observing the protocol.

The higher-level knowledge, including the inductive invariant and the safety, can be incrementally built upon lower-level knowledge.



Knowledge-Driven Proof of Safety

* Knowledge lemmas: Systematically capturing low-level properties of the
protocol that directly follow from the protocol design

* Higher-level knowledge can be incrementally built upon lower-level knowledge

long causality chain

fcompose into

A A A A A A
> > > > > >
7 7 7 7 7 7

fcompose into

Knowledge lemmas NN NN  GNN

\ 4

Safety

Inductive invariant

20

Here, we might as well think of safety as a long causality chain.
With inductive invariant based reasoning, we derive safety by repeatedly applying the inductive invariant, where each arrow symbol indicates an application. This is

much like how we would compose smaller parts into a larger chain.
Similarly, the inductive invariant itself can be composed from knowledge lemmas, where each small arrow symbol indicates the application of a specific knowledge

lemma.

So this picture illustrates how knowledge can be composed incrementally.
For the formal statements of knowledge lemmas and how they lead to modularity, you can check our paper.



Outline

* Higher-Order Functor for Protocol Composition

21

The second major technical contribution of our paper is related to composite protocols.



Sequential Composition of Protocols

Provable Broadcast

Written by Ittai Abraham, Alexander Spiegelman

» Sequential composition can help Posted on September 10, 2022
achieve stronger guarantee

Sender s

Delivery-
Certificate
Formed

» Sequencing the same protocol for
multiple times gives stronger
guarantee

As easy as ABC: Optimal (A)ccountable

» Composing a protocol with certain (B)yzantine (C)onsensus is easy!

n H n H
protocol plugins" grants it new
propertles Pierre Civit', Seth Gilbert?, Vincent Gramoli*!, Rachid Guerraoui’ and Jovan Komatovic!
!Sorbonne University, CNRS, LIP6
2NUS Singapore

SUniversity of Sydney
4EPFL

22

We identify that sequential composition is an important form of protocol composition, since it can allow a protocol to have stronger guarantee.

Sequencing the same protocol for multiple times gives stronger guarantee. This is illustrated in the blog post that | previously mentioned.

Additionally, composing a protocol with certain "protocol plugins" grants it new properties.

For example, this paper introduces such a protocol plugin that by running the protocol plugin after an arbitrary BFT consensus protocol, we can endow the consensus
protocol the so-called accountability property, which is useful in certain cases.



Functor for Protocol Composition

* In BYTHOS, a protocol is encapsulated as a Cog module

» Composition functor: given two protocol modules, constructs a new one

* Allows for composing multiple protocols

23

In Bythos, a protocol is encapsulated as a Coq module.
Sequentially composing protocols is enabled by the composition functor, which is basically a function over protocol modules: given two protocol modules, the functor

produces their sequential composition.
The produced composite protocol is still a protocol module, so it can be plugged back into the functor to be composed with other protocols, which makes it possible

to compose multiple protocol instances.



Composite Protocol Construction

P, Pg Pg

O = running both O

4+ running user-defined

Determining when to trigger some actions in Py
based on the execution of

24

A node running the composite protocol “PB after PA” can be regarded as having two threads running PA and PB respectively.
In addition, the node runs the user-defined triggers, where trigger is the mechanism in our framework for ...



Composing Proofs

* The execution of a composite protocol can be projected into the executions
of sub-protocols

trace of P, ; Py ° ® ® ® ® ® >

25

From the way protocols are sequentially composed, an important observation is that ...



Composing Proofs

* The execution of a composite protocol can be projected into the executions
of sub-protocols

A} taking the component of P,

trace of P, ; Py ——o—o—o—0o—o >
| taking the component of Py
[ J [ J [ J [ J [ J ([ J

26

In other words, we can think the trace of the composite protocol as a combination of the traces of PA and PB.



Composing Proofs

* The execution of a composite protocol can be projected into the executions
of sub-protocols

trace of P_\ @ @ @ @ L @ B

trace of P, ; Py ——o—o—o—o o >

v

trace of Py —eo—o—0o—o—o

27




Composing Proofs

» Allows for composing proofs of sub-protocols by lifting

« Properties of P, (Pp) should hold on the P, (Pg) component of P, ; Pp

 Liveness properties can be even composed across different protocols!

trace of P, ; Py ° ® ® ® ® ® >

trace of Py o} ° ° S P PS

v

28

Since safety and liveness properties are defined in terms of traces, this observation implies that we can lift the properties of PA and PB to the composite protocol.
More precisely, ...

for liveness properties, we can not only lift them, but also compose the liveness properties from different sub-protocols, to derive the
overall liveness of the composite protocol.

Again, you can check our paper to see how this is possible in detail.

So, these are the two main technical contributions of our paper.



Proof Efforts

* Verified 3 asynchronous BFT protocols with their compositions

* BYTHOS + verified case studies: around 7100 lines of Coq code

Library Component Spec Proof Total Reliable Implementation 130 6 136
System (Sec. 3.1) 729 465 1194 Broadcast L.SafEty (s§c. 411 448 2 880
ByrHos Liveness (Sec. 3.2) 160 181 341 (Sec. 4.1) “’enes;( elc' 412) 1:‘21 16; 130251

(Sec. 3) Composition (Sec. 33) 329 255 584 ota 7 i 3
’ Utilities 184 157 341 A tabl Implementation 237 109 346
Total 1402 1058 2460 écmf‘i“ able Safety 619 709 1328
oniirmer .

Implementation (Sec. 2.1) 121 6 127 (Sec. 4.2) Liveness (Sec. 4.2.2) 172 200 372
Provable Safety (Sec. 2.2) 404 320 724 Total 1028 1018 2046

Broadcast Liveness (Sec. 2.3) 92 67 159 Accountable Implementation 33 0 33
(Sec. 2) Composition (Sec. 2.4) 85 10° 95 Reliable Connector (Sec. 4.3.1) 48 92 140

Total 702 403 1105 Broadcast Liveness (Sec. 4.3.1) 3 7 10

(Sec. 4.3) Total 84 99 183

29

In our paper, we verified 3 asynchronous BFT protocols with their compositions to apply these techniques.
In total, our framework and all verified case studies take around the 7100 lines of Coq code.




Summary

* BYTHOS: streamlining the verification of BFT protocols and their compositions
* Facilitating safety & liveness proofs with knowledge-driven proof methodology

 Allowing effective proof reuse in verifying composite BFT protocols

©

Thank you! &

@©
Github Repo Paper

30




