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Array-Based Trees

 Use a struct array to store a tree
* Replace pointers with array indices

* Use a dedicated integer (e.g., -1) to
represent NULL pointer

// generic tree
struct node {
1nt parent,

right_sibling,
first_child;

s

const i1nt NIL = -1;

struct node tree[N];
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Array-Based Trees (Cont’d)

« Sometimes array-based trees are preferable ...
» Potential time/space efficiency benefits
 E.g., random access to a node’s information

 But formally reasoning about array-based trees can be challenging!
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* A representation predicate for a
array-based tree

» arr(p, £): heap predicate, ‘ a a

“array ¢ is stored at pointer p”

» tree_proj(tr, £): pure proposition, o °

“array ¢ stores the tree tr”

(logical) tree tr

arrayZ | 0 [ 1 | 2|3 | 4|5

* defined recursively on fr




Array-Based Trees in Separation Logic

tree_rep, . (p,tr) = 3¢, [tree_proj(tr,{)]
<arr(p, f)

tree_proj(tr, ) = -+ A
3] = {parent =0,

| | right_sibling = —I,
* A representation predicate for first child =4} A ---

array-based tree

(logical) tree tr

e arr(p, ): heap predicate,
“array ¢ is stored at pointer p”

» tree_proj(tr, £): pure proposition,
“array ¢ stores the tree tr”

arrayZ | 0 [ 1 | 2|3 | 4|5

* defined recursively on fr
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Challenge #1: Structure Changing Operation

* Need to specify , and how they change

 Need to prove that the other parts are kept intact
« —> Want a “frame rule” to do localised reasoning on changed parts only

« —> Need to “separate” the array, but a separated part cannot be represented by tree_reparr

? How to specify and verify this program?
O
00016
©

ove _first child(3,0)
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vold rec_traversal (int root) {
// ...
// call rec_traversal
// for each child of root
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Challenge #2: Non-Recursive Traversal

1nt stack[N];
volid nonrec_traversal (int root) {

vold rec_traversal (1nt root) { // push root
// ... while (/* stack not empty */) {
// call rec_traversal int top = /* pop out stack top */;
// for each child of root // ...
} // push the children of top
§
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int stack[N]; a pushed in this order

vold nonrec_traversal (int root) {

ﬁ
5 ofo]o
while (/* stack not empty */) {

int top = /* pop out stack top */;
#

oJo
// push the children of top
s Top
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Challenge #2: Non-Recursive Traversal

int stack[N]; a pushed in this order

vold nonrec_traversal (int root) {

ﬁ
5 ofo]o
while (/* stack not empty */) {

int top = /* pop out stack top */;

oJo
// push the children of top

§
l ; stack

nodevisitingorder | 0 | 3 | 5 | 4 | 2 | 1
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Challenge #2: Non-Recursive Traversal

int stack[N];
volid nonrec_traversal (int root) {
// push root
while (/* stack not empty */) {
int top = /* pop out stack top */;
// ...
// push the children of top

¥
¥

11
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? How to specify the loop invariant?
int stack[N];

volid nonrec_traversal (int root) {
// push root
while (/* stack not empty */) {
int top = /* pop out stack top */;
// ...
// push the children of top

¥
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? How to specify the loop invariant?

int stack[N];
vold nonrec_traversal (1int root) { ,//’////// |
// push root stack exact
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// push the children of top

¥
¥

11



Challenge #2: Non-Recursive Traversal

? How to specify the loop invariant?

int stack[N];
volid nonrec_traversal (int root) { ,//’////// |
// push root stack exact
while (/* stack not empty */) { content visited part
1nt top = /* pop out stack top */;
// ... \ /
// push the children of top Should be consistent
¥ & maintained in sync

¥
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Strategy to C1: Dual Views

Array view tree_rep, . (p,tr) = 3¢, [tree_proj(tr,{)]
(defined before) xarr(p, )

* specialised in verifying random access operations

mutually switch
———————————————————————— . — = R as
derivable needed

Tree view tree_rep, (p,tr) = -

* specialised in verifying structure changing operations
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. tree_rep, _ (p,1r): recursively
defined over fr

e Describes each element of the

array with the singleton (- +— -)
heap predicate

tree_rep, _(p,tr) = -+ *

p+ 3 {parent =0, right_sibling = I,
first child =4)*... p+ 4 p+5
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Dual Views In Action

random access structure changing random access
operations operation ¢ operations

—- P arr Qarr

{tree_rep,__ (p,1r)}
tree_rep_ (p,1r) c tree_rep__ (p,1r') -
tree_rep, _ (p,17) {tree_rep,(p,tr)}| |tree_rep, (p,tr)
| ) 1Prreet € 1Qeet Opree F Qur
{Purrt € 10}

{tree_rep_ (p,1r)}
C

{tree_rep_ (p,1r')}
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Strategy to C2: Tree Splitting

» Key ideas:
 EXxploit the correspondence between a node and the path from the root to it
* The stack content and the visited part: functions of the stack top node

* The visited part: expressed as the right half of tree splitting

19
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- = Reminder: children are
vertlcal Spllt pushed from left to right
» Split the tree vertically along the path from the root to a node

* The right half: including that node, its ancestors and the subtrees on their right

split by node 3 split by node 5 split by node 2
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while (/* stack not empty */) {

int top = /* pop out stack top */;
/" 010,60

// push the children of top

} °°

stack top node

. = the right half of vertical split by stack top
* Pre-iteration visited part = minus stack top
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Vertical Split and Visited Part

while (/* stack not empty */) {

int top = /* pop out stack top */;
/" 0100

// push the children of top

: °°

stack top node

o Post-iteration visited part = the right half of vertical split by stack top

* Pre-iteration visited part = post-iteration visited part minus stack top

-the right half of vertical split by the right sibling of stack top

Check our paper for exact definition!
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while (/* stack not empty */) {

int top = /* pop out stack top */;
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Retrieve the Stack Content

while (/* stack not empty */) {

int top = /* pop out stack top */;
/" D@ (=

// push the children of top

: ° "\

stack top node
. = nodes on the left of the ancestors of stack top

 The stack after an iteration = minus stack top
plus the children of stack top

22



Loop Invariant of Non-Recursive Traversal

o Sufficient to define by keeping track of the stack top node

Pre-iteration

stack & visited part

while (/* stack not empty */) {
int top = /* pop out stack top */;
Functions of stack top // ...
// push the children of top

¥

Post-iteration

stack & visited part
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Tree Clock

* |Implementing logical clocks using generic trees

* Optimal asymptotic time complexity in performing logical clock operations

(¢, : 16, 1, : 20, t; : 17, @ @
023, 15:4, 1, : 15,1, : 11) *

vector clock tree clock
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27



Tree Clock (Cont’d)

 The number of threads are bounded — suitable as array-based trees

» |ts join operation: happens between two tree clocks, 7C; and T,

27



Tree Clock (Cont’d)

 The number of threads are bounded — suitable as array-based trees

» |ts join operation: happens between two tree clocks, 7C; and T,

» Performing non-recursive traversal over 7C»

27



Tree Clock (Cont’d)

 The number of threads are bounded — suitable as array-based trees

» |ts join operation: happens between two tree clocks, 7C; and T,

» Performing non-recursive traversal over 7C»

» Performing structure changing operations on 7C’y according to the stack
top node of TC»

27



Tree Clock (Cont’d)

 The number of threads are bounded — suitable as array-based trees

» |ts join operation: happens between two tree clocks, 7C; and T,

» Performing non-recursive traversal over 7C»

» Performing structure changing operations on 7C’y according to the stack
top node of TC»

« —> Manifesting both challenges
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Verifying Tree Clock

* [ree clock is originally implemented in Java
» Faithfully translated into C

e |ts functional model: verified in Cog ) Verified
[~ ) Software

(=) Toolchain

* |ts imperative join operation: verified using Verified
Software Toolchain (VST)
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Rooting For Efficiency

Table 2. Evaluation: array-based v. pointer-based tree clocks

1 2 3 4 8 6

Trace len. num. Avg.len. Ptr. TC(s) Arr. TC(s) Speedup

(OM, 60M] 35 0.14M 0.22 0.16 1.25X
(60M, 112M] 24 102M 162.27 115.32 1.41X
(112M, 136M] 29 125M 206.57 147.22 1.40X
(136M, 215M] 29 169M 222.36 190.72 1.17X

(215M, 1B] 29 391M 657.23 463.32 1.42X

Total 146 31.41 48.90 36.10 1.35X

* Array-based trees do bring efficiency!
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Summary

Array-based trees: performance-oriented implementation of tree structures
Challenges: structure changing operations and non-recursive tree traversals

Strategies: dual views and tree splitting

Case study: verification of tree clock

or

Mechanised Our paper The tree clock
development (this talk) paper
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Summary

Array-based trees: performance-oriented implementation of tree structures
Challenges: structure changing operations and non-recursive tree traversals
Strategies: dual views and tree splitting

Case study: verification of tree clock

or

Thank you! @

Mechanised Our paper The tree clock
development (this talk) paper
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