Rooting for Efficiency:
Mechanised Reasoning

about Array-Based Trees
In Separation Logic

Qiyuan Zhao, George Pirlea, Zhendong Ang,
Umang Mathur, llya Sergey

National University
of Singapore

For CPP 2024

Pointer-Based Trees

// binary tree
struct node {
struct node
*parent,
*left_child,
*right_child;

Pointer-Based Trees

// binary tree // generic tree
struct node { struct node {
struct node struct node
*parent, *parent,
*left_child, *right_sibling,
*right_child; *f1rst_child;

o

Pointer-Based Trees

// binary tree // generic tree
struct node { struct node {
struct node struct node
*parent, *parent,
*left_child, *right_sibling,
*right_child; *f1rst_child;

o

Pointer-Based Trees

// binary tree // generic tree
struct node { struct node {
struct node struct node
*parent, *parent,
*left_child, *right_sibling,
*right_child; *f1rst_child;

o

Array-Based Trees

// generic tree
struct node {
1nt parent,

right_sibling,
first_child;

s

const i1nt NIL = -1;

struct node tree[N];

Array-Based Trees

 Use a struct array to store a tree

// generic tree
struct node {
1nt parent,

right_sibling,
first_child;

s

const i1nt NIL = -1;

struct node tree[N];

Array-Based Trees

 Use a struct array to store a tree

* Replace pointers with array indices

// generic tree
struct node {
1nt parent,

right_sibling,
first_child;

s

const i1nt NIL = -1;

struct node tree[N];

Array-Based Trees

 Use a struct array to store a tree
* Replace pointers with array indices

* Use a dedicated integer (e.g., -1) to
represent NULL pointer

// generic tree
struct node {
1nt parent,

right_sibling,
first_child;

s

const i1nt NIL = -1;

struct node tree[N];

Array-Based Trees (Cont’d)

« Sometimes array-based trees are preferable ...

Array-Based Trees (Cont’d)

« Sometimes array-based trees are preferable ...

* Potential time/space efficiency benefits

Array-Based Trees (Cont’d)

« Sometimes array-based trees are preferable ...
* Potential time/space efficiency benefits

 E.g., random access to a node’s information

Array-Based Trees (Cont’d)

« Sometimes array-based trees are preferable ...
» Potential time/space efficiency benefits
 E.g., random access to a node’s information

 But formally reasoning about array-based trees can be challenging!

Array-Based Trees in Separation Logic

Array-Based Trees in Separation Logic

tree_rep, . (p,tr) = 3¢, [tree_proj(tr,{)]
<arr(p, f)

* A representation predicate for
array-based tree

Array-Based Trees in Separation Logic

tree_rep, . (p,tr) = 3¢, [tree_proj(tr,{)]
<arr(p, f)

* A representation predicate for
array-based tree

e arr(p, £): heap predicate,
“array ¢ is stored at pointer p”

Array-Based Trees in Separation Logic

tree_rep, . (p,tr) = 3¢, [tree_proj(tr,{)]
<arr(p, f)

* A representation predicate for
array-based tree

e arr(p, £): heap predicate,
“array ¢ is stored at pointer p”

» tree_proj(tr, £): pure proposition,
“array ¢ stores the tree tr”

Array-Based Trees in Separation Logic

tree_rep, . (p,tr) = 3¢, [tree_proj(tr,{)]
<arr(p, f)

* A representation predicate for
array-based tree

e arr(p, £): heap predicate,
“array ¢ is stored at pointer p”

» tree_proj(tr, £): pure proposition,
“array ¢ stores the tree tr”

* defined recursively on fr

Array-Based Trees in Separation Logic

tree_rep, . (p,tr) = 3¢, [tree_proj(tr,{)]
<arr(p, f)

* A representation predicate for a
array-based tree

» arr(p, £): heap predicate, ‘ a a

“array ¢ is stored at pointer p”

» tree_proj(tr, £): pure proposition, o °

“array ¢ stores the tree tr”

(logical) tree tr

arrayZ | 0 [1 | 2|3 | 4|5

* defined recursively on fr

Array-Based Trees in Separation Logic

tree_rep, . (p,tr) = 3¢, [tree_proj(tr,{)]
<arr(p, f)

tree_proj(tr,) = -+ A
3] = {parent =0,

| | right_sibling = —I,
* A representation predicate for first child =4} A ---

array-based tree

(logical) tree tr

e arr(p,): heap predicate,
“array ¢ is stored at pointer p”

» tree_proj(tr, £): pure proposition,
“array ¢ stores the tree tr”

arrayZ | 0 [1 | 2|3 | 4|5

* defined recursively on fr

Challenge #1: Structure Changing Operation

Challenge #1: Structure Changing Operation

vold move_first_child (int src, int dst) {
// move the first child of node src
// to be the first child of node dst

¥

Challenge #1: Structure Changing Operation

vold move_first_child (1nt src, int dst) {
// move the first child of node src
// to be the first child of node dst

¥

6 E

ove _first child(3,0)

Challenge #1: Structure Changing Operation

vold move_first_child (1nt src, int dst) {
// move the first child of node src
// to be the first child of node dst

¥

? How to specify and verify this program?

6 E

ove _first child(3,0)

Challenge #1: Structure Changing Operation

? How to specify and verify this program?

ove _first child(3,0)

Challenge #1: Structure Changing Operation

* Need to specify , and how they change

? How to specify and verify this program?

ove _first child(3,0)

Challenge #1: Structure Changing Operation

* Need to specify , and how they change

? How to specify and verify this program?

ove _first child(3,0)

Challenge #1: Structure Changing Operation

* Need to specify , and how they change

 Need to prove that the other parts are kept intact

? How to specify and verify this program?

14 E

ove _first child(3,0)

Challenge #1: Structure Changing Operation

* Need to specify , and how they change

 Need to prove that the other parts are kept intact

« —> Want a “frame rule” to do localised reasoning on changed parts only

? How to specify and verify this program?

14 E

ove _first child(3,0)

Challenge #1: Structure Changing Operation

* Need to specify , and how they change

 Need to prove that the other parts are kept intact
« —> Want a “frame rule” to do localised reasoning on changed parts only

« —> Need to “separate” the array, but a separated part cannot be represented by tree_reparr

? How to specify and verify this program?
O
00016
©

ove _first child(3,0)

Challenge #2: Non-Recursive Traversal

Challenge #2: Non-Recursive Traversal

vold rec_traversal (int root) {
// ...
// call rec_traversal
// for each child of root

¥

Challenge #2: Non-Recursive Traversal

1nt stack[N];
volid nonrec_traversal (int root) {

vold rec_traversal (1nt root) { // push root
// ... while (/* stack not empty */) {
// call rec_traversal int top = /* pop out stack top */;
// for each child of root // ...
} // push the children of top
§

¥

Challenge #2: Non-Recursive Traversal

int stack[N]; a

vold nonrec_traversal (int root) {

e ofo]o
while (/* stack not empty */) {

int top = /* pop out stack top */;

oJo
// push the children of top
s Top

} stack | © -

node visiting order

9

Challenge #2: Non-Recursive Traversal

int stack[N]; a

vold nonrec_traversal (int root) {

i ofo]o
while (/* stack not empty */) {

int top = /* pop out stack top */;

/] ...
— .) &
// push the children of top

$
} stack

node visiting order | 0

9

Challenge #2: Non-Recursive Traversal

int stack[N]; a

vold nonrec_traversal (int root) {

i ofo]o
while (/* stack not empty */) {

int top = /* pop out stack top */;
oJ0
} // push the children of top
Top

} stack | 1 | 2 | 3 -

node visiting order | 0

9

Challenge #2: Non-Recursive Traversal

int stack[N]; a pushed in this order

vold nonrec_traversal (int root) {

ﬁ
5 ofo]o
while (/* stack not empty */) {

int top = /* pop out stack top */;
oJ0
} // push the children of top
Top

} stack | 1 | 2 | 3 -

node visiting order | 0

9

Challenge #2: Non-Recursive Traversal

int stack[N]; a pushed in this order

vold nonrec_traversal (int root) {

ﬁ
5 ofo]o
while (/* stack not empty */) {

int top = /* pop out stack top */;
of0
// push the children of top

} Top

Iy stack | 1 | 2 | 3 .

node visiting order | 0

10

Challenge #2: Non-Recursive Traversal

int stack[N]; a pushed in this order

vold nonrec_traversal (int root) {

ﬁ
5 olo]o
while (/* stack not empty */) {
#

int top = /* pop out stack top */;
s 0 e
// push the children of top

$ Top

Iy stack | 1 | 2 .

node visiting order | 0

10

Challenge #2: Non-Recursive Traversal

int stack[N]; a pushed in this order

vold nonrec_traversal (int root) {

ﬁ
5 ofo]o
while (/* stack not empty */) {

int top = /* pop out stack top */;

/7 ...
— .) &
// push the children of top
Top

¥

Iy stack | 1 | 2 .

node visiting order | 0 | 3

10

Challenge #2: Non-Recursive Traversal

int stack[N]; a pushed in this order

vold nonrec_traversal (int root) {

ﬁ
5 ofo]o
while (/* stack not empty */) {

int top = /* pop out stack top */;
#

oJo
// push the children of top
s Top

Iy stack | 1 | 2 | 4 | 5 .

node visiting order | 0 | 3

10

Challenge #2: Non-Recursive Traversal

int stack[N]; a pushed in this order

vold nonrec_traversal (int root) {

ﬁ
5 ofo]o
while (/* stack not empty */) {

int top = /* pop out stack top */;

oJo
// push the children of top

§
l ; stack

nodevisitingorder | 0 | 3 | 5 | 4 | 2 | 1

10

Challenge #2: Non-Recursive Traversal

int stack[N];
volid nonrec_traversal (int root) {
// push root
while (/* stack not empty */) {
int top = /* pop out stack top */;
// ...
// push the children of top

¥
¥

11

Challenge #2: Non-Recursive Traversal

? How to specify the loop invariant?
int stack[N];

volid nonrec_traversal (int root) {
// push root
while (/* stack not empty */) {
int top = /* pop out stack top */;
// ...
// push the children of top

¥
¥

11

Challenge #2: Non-Recursive Traversal

? How to specify the loop invariant?

int stack[N];
vold nonrec_traversal (1int root) { ,//’//////
// push root stack

while (/* stack not empty */) { content
int top = /* pop out stack top */;
/7 ...
// push the children of top

¥
¥

11

Challenge #2: Non-Recursive Traversal

? How to specify the loop invariant?

int stack[N];
vold nonrec_traversal (1int root) { ,//’////// |
// push root stack exact

while (/* stack not empty */) { content visited part
int top = /* pop out stack top */;
/7 ...
// push the children of top

¥
¥

11

Challenge #2: Non-Recursive Traversal

? How to specify the loop invariant?

int stack[N];
volid nonrec_traversal (int root) { ,//’////// |
// push root stack exact
while (/* stack not empty */) { content visited part
1nt top = /* pop out stack top */;
// ... \ /
// push the children of top Should be consistent
¥ & maintained in sync

¥

11

I“ Roadmap

* Challenges

12

I“ Roadmap

o Strategies

13

Strategy to C1: Dual Views

Array view
(defined before)

14

Strategy to C1: Dual Views

Array view tree_rep, . (p,tr) = 3¢, [tree_proj(tr,{)]
(defined before) xarr(p,)

Tree view tree_rep, (p,tr) = -

14

Strategy to C1: Dual Views

Array view tree_rep, . (p,tr) = 3¢, [tree_proj(tr,{)]
(defined before) xarr(p,)

* specialised in verifying random access operations

Tree view tree_rep, (p,tr) = -

* specialised in verifying structure changing operations

14

Strategy to C1: Dual Views

Array view tree_rep, . (p,tr) = 3¢, [tree_proj(tr,{)]
(defined before) xarr(p,)

* specialised in verifying random access operations

mutually switch
———————————————————————— . — = R as
derivable needed

Tree view tree_rep, (p,tr) = -

* specialised in verifying structure changing operations

14

Tree View Predicate

. tree_rep, _ (p,1r): recursively
defined over fr

15

Tree View Predicate

. tree_rep, _ (p,1r): recursively
defined over fr

e Describes each element of the

array with the singleton (- +— -)
heap predicate

15

Tree View Predicate

. tree_rep, _ (p,1r): recursively
defined over fr

e Describes each element of the

array with the singleton (- +— -)
heap predicate

15

Tree View Predicate

. tree_rep, _ (p,1r): recursively
defined over fr

e Describes each element of the

array with the singleton (- +— -)
heap predicate

tree_rep, _(p,tr) = -+ *

p+ 3 {parent =0, right_sibling = I,
first child =4)*... p+ 4 p+5

15

Tree View Predicate (Cont’d)

* Essentially a large separating conjunction

16

Tree View Predicate (Cont’d)

* Essentially a large separating conjunction

« —> Easy to perform localised reasoning!

16

Tree View Predicate (Cont’d)

* Essentially a large separating conjunction

« —> Easy to perform localised reasoning!

 E.Q., “focusing” on a subtree

16

Tree View Predicate (Cont’d)

* Essentially a large separating conjunction

« —> Easy to perform localised reasoning!

 E.Q., “focusing” on a subtree

16

Tree View Predicate (Cont’d)

* Essentially a large separating conjunction

« —> Easy to perform localised reasoning!

 E.Q., “focusing” on a subtree

16

Mutual Derivability of Dual Views

Mutual Derivability of Dual Views

arr(p,f) 2 K p+irs £[i]

ic[0,]¢])

17

array ¢

0

1

2

3

p

17

p+1

D+ 2

Mutual Derivability of Dual Views

arr(p,€) £ X p+i Li]

ic[0,]¢])

p+3

p+4 p+5

Mutual Derivability of Dual Views

arr(p,€) £ X p+i Li]

ic[0,]¢])

arrayZ | 0 [1 | 2|3 | 4|5

tree_rep_ (p,tr) = 37, [tree_proj(ir, £) |
*arr(p,?)

17

p+4 p+5

Mutual Derivability of Dual Views

arr(p,€) £ X p+i Li]

i€[0,]¢])
array Z | 0 | 1 | 2 | 3 [4[5 |=| 0 [x] 1 [*[2 [x]| 3 [*k] 4 |*x]|5
p p p+1 p+2 p+3 p+4 p+0O
tree_rep, (p,tr) = 37, [tree_proj(tr,0) | 3£,[--- AL[3] = ... A-]

*arr(p,) *(Ce* p+3 e 3]F)

17

Mutual Derivability of Dual Views

arr(p,€) £ X p+i Li]

ie[o,]¢])
array Z | 0 | 1 | 2 | 3 [4[5 |=| 0 [x] 1 [*[2 [x]| 3 [*k] 4 |*x]|5
P p p+1 p+2 p+3 p+4 p+5
tree_rep, (p,tr) = 37, [tree_proj(tr,0) | 3£,[--- AL[3] = ... A-]
*arr(p, €) F(oe® p+3 - L[3]F)

tree_rep, (p,tr)=--*p+3 ... %

17

Mutual Derivability of Dual Views

arr(p,€) £ X p+i Li]

i€[0,]¢])
array Z | 0 | 1 | 2 | 3 [4[5 |=| 0 [x] 1 [*[2 [x]| 3 [*k] 4 |*x]|5
p p p+1 p+2 p+3 p+4 p+0O
tree_rep, (p,tr) = 37, [tree_proj(tr,0) | 3¢, [--- A€[3] = ... A-]
*arr(p,) *(® p+3 > 3] --)

I mutually derivable!

tree_rep, (p,tr) =¥ p+3 > ... %

17

Mutual Derivability of Dual Views

arr(p,€) £ X p+i Li]

ie[0,]€])
arrayZ [0 | 1 | 2| 3 —=| 0 1 2 3 4 |%| 5
p p p+1 p+2 p+3 p+4 p+0O
tree_rep, (p,tr) = 37, [tree_proj(tr,0) |« 3¢, [/\f[3]
*arr(p,) p+3|—>z/”[3]>I<
1 I I mutually derivable!

tree_rep, (p,1r) =" p+3 ...

17

Mutual Derivability of Dual Views

arr(p,€) £ X p+i Li]

ic[0,]£])
array Z | 0 | 1 | 2 | 3 [4[5 |=| 0 [x] 1 [*[2 [x]| 3 [*k] 4 |*x]|5
p p p+1 p+2 p+3 p+4 p+0O

tree_rep_ (p,tr) =37, [tree_proj(tr,0) |« 3¢, [/\f[B]
*arr(p,) p+3|—>z/”[3]>I<

1 I I mutually derivable!

tree_rep, (p,1r) =" p+3 ...

17

Dual Views In Action

Dual Views In Action

random access structure changing random access
operations operation ¢ operations

—- P arr Qarr

18

Dual Views In Action

random access structure changing random access
' operations operation ¢ operations

—- P arr Qarr

P, =P, {Peet € 10 e} Qrree F Qo
Pt € 10}

18

Dual Views In Action

random access structure changing random access
operations operation ¢ operations
I Pd?’l’ QCZW'
tree_rep_ (p,1r) tree_rep__ (p,1r') -
tree_rep,__ (p, 1) tree_rep, (p,tr’)
P 7 Pl Prreet € 1OQreet Opree F Qur
1Parrt € 1Qur}

18

Dual Views In Action

random access structure changing random access
operations operation ¢ operations

—- P arr Qarr

{tree_rep,__ (p,1r)}
tree_rep_ (p,1r) c tree_rep__ (p,1r') -
tree_rep, _ (p,17) {tree_rep,(p,tr)}| |tree_rep, (p,tr)
|) 1Prreet € 1Qeet Opree F Qur
{Purrt € 10}

{tree_rep_ (p,1r)}
C

{tree_rep_ (p,1r')}

Strategy to C2: Tree Splitting

» Key ideas:

Strategy to C2: Tree Splitting

» Key ideas:

 EXxploit the correspondence between a node and the path from the root to it

19

Strategy to C2: Tree Splitting

» Key ideas:
 EXxploit the correspondence between a node and the path from the root to it

* The stack content and the visited part: functions of the stack top node

19

Strategy to C2: Tree Splitting

» Key ideas:
 EXxploit the correspondence between a node and the path from the root to it
* The stack content and the visited part: functions of the stack top node

* The visited part: expressed as the right half of tree splitting

19

- = Reminder: children are
Vertlcal Spllt pushed from left to right

» Split the tree vertically along the path from the root to a node

20

- = Reminder: children are
vertlcal Spllt pushed from left to right
» Split the tree vertically along the path from the root to a node

20

- = Reminder: children are
vertlcal Spllt pushed from left to right

» Split the tree vertically along the path from the root to a node

split by node 3

20

- = Reminder: children are
vertlcal Spllt pushed from left to right

» Split the tree vertically along the path from the root to a node

split by node 3 split by node 5

20

- = Reminder: children are
vertlcal Spllt pushed from left to right

» Split the tree vertically along the path from the root to a node

split by node 3 split by node 5 split by node 2

20

- = Reminder: children are
vertlcal Spllt pushed from left to right
» Split the tree vertically along the path from the root to a node

* The right half: including that node, its ancestors and the subtrees on their right

split by node 3 split by node 5 split by node 2

20

Vertical Split and Visited Part

while (/* stack not empty */) {

int top = /* pop out stack top */;
/" (D@ (&

// push the children of top

} °e

stack top node

21

Vertical Split and Visited Part

while (/* stack not empty */) {
int top = /* pop out stack top */;
/7 ...
// push the children of top

¥

stack top node

= the right half of vertical split by stack top

21

Vertical Split and Visited Part

while (/* stack not empty */) {

int top = /* pop out stack top */;
/" 0100

// push the children of top

} °°

stack top node

o Post-iteration visited part = the right half of vertical split by stack top

* Pre-iteration visited part = post-iteration visited part minus stack top

21

Vertical Split and Visited Part

while (/* stack not empty */) {

int top = /* pop out stack top */;
/" 010,60

// push the children of top

} °°

stack top node

. = the right half of vertical split by stack top
* Pre-iteration visited part = minus stack top
* |ntuitively, = the right half of vertical split by the right sibling of stack top

21

Vertical Split and Visited Part

while (/* stack not empty */) {

int top = /* pop out stack top */;
/" 0100

// push the children of top

: °°

stack top node

o Post-iteration visited part = the right half of vertical split by stack top

* Pre-iteration visited part = post-iteration visited part minus stack top

-the right half of vertical split by the right sibling of stack top

Check our paper for exact definition!

Retrieve the Stack Content

while (/* stack not empty */) {

int top = /* pop out stack top */;
/" (D@ (&

// push the children of top

: ° "\

stack top node

22

Retrieve the Stack Content

while (/* stack not empty */) {

int top = /* pop out stack top */;
/" D@ (=

// push the children of top

: ° "\

stack top node
= nodes on the left of the ancestors of stack top

22

Retrieve the Stack Content

while (/* stack not empty */) {

int top = /* pop out stack top */;
/" D@ (=

// push the children of top

: ° "\

stack top node
. = nodes on the left of the ancestors of stack top

 The stack after an iteration = minus stack top
plus the children of stack top

22

Loop Invariant of Non-Recursive Traversal

o Sufficient to define by keeping track of the stack top node

Pre-iteration

stack & visited part

while (/* stack not empty */) {
int top = /* pop out stack top */;
Functions of stack top // ...
// push the children of top

¥

Post-iteration

stack & visited part

23

I“ Roadmap

» Case study

24

(published in ASPLOS 2022)

A Tree Clock Data Structure for Causal Orderings in Concurrent
Executions

Umang Mathur
National University of Singapore
Singapore
umathur@comp.nus.edu.sg

Hiinkar Can Tung
Aarhus University
Denmark
tunc@cs.au.dk

ABSTRACT

Dynamic techniques are a scalable and effective way to analyze con-
current programs. Instead of analyzing all behaviors of a program,
these techniques detect errors by focusing on a single program
execution. Often a crucial step in these techniques is to define a
causal ordering between events in the execution, which is then
computed using vector clocks, a simple data structure that stores
logical times of threads. The two basic operations of vector clocks,
namely join and copy, require ©(k) time, where k is the number of
threads. Thus they are a computational bottleneck when k is large.

In this work, we introduce tree clocks, a new data structure that re-

fad

Andreas Pavlogiannis
Aarhus University
Denmark
pavlogiannis@cs.au.dk

Mahesh Viswanathan
University of Illinois at Urbana-Champaign
USA
vmahesh@illinois.edu

KEYWORDS

concurrency, happens-before, vector clocks, dynamic analyses

ACM Reference Format:

Umang Mathur, Andreas Pavlogiannis, Hiinkar Can Tung, and Mahesh
Viswanathan. 2022. A Tree Clock Data Structure for Causal Orderings in
Concurrent Executions. In Proceedings of the 27th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS °22), February 28 — March 4, 2022, Lausanne, Switzerland.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3503222.3507734

25

(published in ASPLOS 2022)

A Tree Clock Data Structure for(Causal Orderings
Execution

Umang Mathur
National University of Singapore
Singapore
umathur@comp.nus.edu.sg

Hiinkar Can Tuncg
Aarhus University
Denmark
tunc@cs.au.dk

ABSTRACT

Dynamic techniques are a scalable and effective way to analyze con-
current programs. Instead of analyzing all behaviors of a program,
these techniques detect errors by focusing on a single program
execution. Often a crucial step in these techniques is to define a
causal ordering between events in the execution, which is then
computed using vector clocks, a simple data structure that stores
logical times of threads. The two basic operations of vector clocks,
namely join and copy, require ©(k) time, where k is the number of
threads. Thus they are a computational bottleneck when k is large.

In this work, we introduce tree clocks, a new data structure that re-

fad

n Concurrent

Andreas Pavlogiannis
Aarhus University
Denmark
pavlogiannis@cs.au.dk

Mahesh Viswanathan
University of Illinois at Urbana-Champaign
USA
vmahesh@illinois.edu

KEYWORDS

concurrency, happens-before, vector clocks, dynamic analyses

ACM Reference Format:

Umang Mathur, Andreas Pavlogiannis, Hiinkar Can Tung, and Mahesh
Viswanathan. 2022. A Tree Clock Data Structure for Causal Orderings in
Concurrent Executions. In Proceedings of the 27th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS °22), February 28 — March 4, 2022, Lausanne, Switzerland.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3503222.3507734

25

Tree Clock

* |Implementing logical clocks using generic trees

26

Tree Clock

* |Implementing logical clocks using generic trees

(t; : 16,1, : 20, t; : 17,
023, 15:4, 1, : 15,1, : 11)

vector clock

26

Tree Clock

* |Implementing logical clocks using generic trees

(¢, : 16, 1, : 20, t; : 17, @ @
023, 15:4, 1, : 15,1, : 11) *

vector clock tree clock

26

Tree Clock

* |Implementing logical clocks using generic trees

* Optimal asymptotic time complexity in performing logical clock operations

(¢, : 16, 1, : 20, t; : 17, @ @
023, 15:4, 1, : 15,1, : 11) *

vector clock tree clock

26

Tree Clock (Cont’d)

 The number of threads are bounded — suitable as array-based trees

27

Tree Clock (Cont’d)

 The number of threads are bounded — suitable as array-based trees

» |ts join operation: happens between two tree clocks, 7C; and T,

27

Tree Clock (Cont’d)

 The number of threads are bounded — suitable as array-based trees

» |ts join operation: happens between two tree clocks, 7C; and T,

» Performing non-recursive traversal over 7C»

27

Tree Clock (Cont’d)

 The number of threads are bounded — suitable as array-based trees

» |ts join operation: happens between two tree clocks, 7C; and T,

» Performing non-recursive traversal over 7C»

» Performing structure changing operations on 7C’y according to the stack
top node of TC»

27

Tree Clock (Cont’d)

 The number of threads are bounded — suitable as array-based trees

» |ts join operation: happens between two tree clocks, 7C; and T,

» Performing non-recursive traversal over 7C»

» Performing structure changing operations on 7C’y according to the stack
top node of TC»

« —> Manifesting both challenges

27

Verifying Tree Clock

* [ree clock is originally implemented in Java
» Faithfully translated into C

e |ts functional model: verified in Cog) Verified
[~) Software

(=) Toolchain

* |ts imperative join operation: verified using Verified
Software Toolchain (VST)

28

Rooting For Efficiency

Table 2. Evaluation: array-based v. pointer-based tree clocks

1 2 3 4 8 6

Trace len. num. Avg.len. Ptr. TC(s) Arr. TC(s) Speedup

(OM, 60M] 35 0.14M 0.22 0.16 1.25X
(60M, 112M] 24 102M 162.27 115.32 1.41X
(112M, 136M] 29 125M 206.57 147.22 1.40X
(136M, 215M] 29 169M 222.36 190.72 1.17X

(215M, 1B] 29 391M 657.23 463.32 1.42X

Total 146 31.41 48.90 36.10 1.35X

* Array-based trees do bring efficiency!

29

Summary

Array-based trees: performance-oriented implementation of tree structures
Challenges: structure changing operations and non-recursive tree traversals

Strategies: dual views and tree splitting

Case study: verification of tree clock

or

Mechanised Our paper The tree clock
development (this talk) paper

30

Summary

Array-based trees: performance-oriented implementation of tree structures
Challenges: structure changing operations and non-recursive tree traversals
Strategies: dual views and tree splitting

Case study: verification of tree clock

or

Thank you! @

Mechanised Our paper The tree clock
development (this talk) paper

30

